

Automatic Extraction of Conceptual Interoperability

Constraints from API Documentation

MASTER THESIS

By

Mohammed Ismail Abujayyab

387380

April, 2016

MASTER OF SCIENCE

Department of Computer Science

TECHNISCHEN UNIVERSITÄT KAISERSLAUTERN

Kaiserslautern, Germany

https://de.linkedin.com/in/mohammedabujayyab
https://de.linkedin.com/in/mohammedabujayyab
http://www.uni-kl.de/en/home/

Automatic Extraction of Conceptual Interoperability

Constraints from API Documentation

MASTER THESIS

By

Mohammed Ismail Abujayyab

387380

April, 2016

First Supervisor: Prof. Dr. Dr. h.c. H. Dieter Rombach

Second Supervisor: Hadil Abukwaik, MSc.

https://de.linkedin.com/in/mohammedabujayyab
https://de.linkedin.com/in/mohammedabujayyab
http://wwwagse.informatik.uni-kl.de/staff/rombach/
http://wwwagse.informatik.uni-kl.de/staff/abukwaik/

4

DECLARATION OF AUTHORSHIP

I, Mohammed Ismail Abujayyab, declare that this thesis titled, ’Automatic Extraction of Conceptual

Interoperability Constraints from API Documentation’ and the work presented in it are my own. I

confirm that:

 This work was done wholly or mainly while in candidature for a master degree at this Uni-

versity.

 Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

 Where I have consulted the published work of others, this is always clearly attributed.

 Where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work.

 Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

 I have acknowledged all main sources of help.

Signature

Place, Date

5

DEDICATION

This work is dedicated to my family

Mohammed Ismail Abujayyab

6

ACKNOWLEDGEMENTS

 All praises to Almighty Allah Who makes me able to complete this task. My words of special

thanks to my thesis supervisors Prof. Dr. Dr. h.c. H. Dieter Rombach and Hadil Abukwaik, MSc.

who played a major role in the fulfillment of this thesis, without their valuable directions, this might

be an impossible work for me. The door to Hadil Abukwaik, MSc. office was always open whenever

I ran into a trouble spot or had a question about my research or writing. She consistently steered me

in the right the direction whenever she thought I needed it.

 Next, I must express my very profound gratitude to my family for providing me with unfailing

support and continuous encouragement throughout my years of study, the process of the thesis re-

search and writing.

 In the last, I am really thankful to my friends Aied Abujayyab, Mohammed Abufouda, Hafiz Aziza,

Ahmed Alaraj, Ramzi Matar and Mahmoud Abujayyab who always spare their precious time for

me; remain with me during different phases of life, with their sincere support and encouragement.

 This accomplishment would not have been possible without them. Thank you!

Author

Mohammed Ismail Abujayyab

7

Table of Contents

1 INTRODUCTION ... 12

1.1 Overview ... 12

1.2 Research methodology and contributions .. 12

1.3 Outline ... 14

2 BACKGROUND ... 15

2.1 Conceptual Interoperability ... 15

2.2 Natural Language Processing (NLP) ... 17

2.3 Machine Learning (ML) .. 18

3 RELATED WORK .. 22

4 RESEARCH METHODOLOGY .. 24

4.1 Research methods .. 24

4.2 Goals and Research Questions .. 24

5 RESEARCH PART ONE: MULTIPLE-CASE STUDY .. 26

5.1 Study design (Holistic multiple-case study) ... 26

5.2 Study Execution... 27

5.3 Discussion ... 44

5.4 Threats to validity .. 45

6 RESEARCH PART TWO: AUTOMATIC IDENTIFICATION .. 47

6.1 First Approach: Rule-based Machine Learning Classification ... 47

Rule construction using NLP .. 47

Exploratory Experiment .. 50

Evaluation Metrics .. 53

Results and Evaluation .. 54

6.2 Second Approach: Bag-of-Words-based Machine Learning Classification 56

Data preparation ... 56

Perquisites input for our ML classification model. ... 58

Exploratory Experiment .. 58

Evaluation Metrics .. 60

Results and Evaluation. ... 60

7 TECHNICAL SUPPORT (A TOOL PROTOTYPE) .. 68

Principle of work .. 68

Using the CEP-COIN Tool ... 69

CEP-COIN Architecture ... 71

CEP-COIN Implementation .. 72

Tool Performance ... 75

Future work and development... 75

8 RESEARCH CHALLENGES ... 77

8

8.1 Lack of labeled data ... 77

8.2 Identifying cross-case COINs identification rules. .. 78

8.3 Understanding the semantics and contexts. ... 78

8.4 Limitation of resources. ... 79

9 OVERALL DISCUSSION AND CONCLUSION .. 80

10 FUTURE WORK ... 82

11 APPENDIX .. 83

11.1 Tables .. 83

12 Bibliography .. 94

9

List of Figures

Fig. 1. An example of POS tagging, chunking and clause identification. [17]. .. 17
Fig. 2. Standard Stanford dependencies [18] .. 17
Fig. 3. Text Classification Workflow.. 19
Fig. 4. Feature Selection workflow ... 20
Fig. 5. Holistic multiple-case study [49] ... 26
Fig. 6. Case execution process .. 28
Fig. 7. Data Storage along data preparation and collection .. 30
Fig. 8. Total effort in time with respect to the document size ... 31
Fig. 9. Content analysis method 'process flow' ... 32
Fig. 10. Snapshot of the manual identification of the patterns .. 32
Fig. 11. Pseudo code of deriving Two-COIN corpus from Seven-COIN corpus .. 33
Fig. 12. Seven-COIN corpus and Two-COIN corpus structure .. 33
Fig. 13. Seven-COIN instances distribution ... 35
Fig. 14. Two-COIN instances distribution .. 35
Fig. 15. Cases distribution over COINs .. 36
Fig. 16. The classification process performed by two different researchers ... 46
Fig. 17. 'Process Flow' of the first machine learning classification approach ... 47
Fig. 18. Snapshot of an excerpt of the rule matrix .. 51
Fig. 19. Rules distribution over the COINs Classes .. 52
Fig. 20. 'Process Flow' of our model [2] .. 56
Fig. 21. Text algorithms performance via N-Grams ... 62
Fig. 22. Comparison between using corpus size corresponding to different N-Grams 63
Fig. 23. Performance of text classification algorithms via different N-Gram combinations 63
Fig. 24. Explanation of Hypernym ... 64
Fig. 25. An excerpt of the developed Python code to extract Hypernym using the WordNet 64
Fig. 26. Accuracy comparison between different classification algorithms ... 66
Fig. 27. Algorithms performance via N-Gram .. 66
Fig. 28. Classification performance via different N-Gram combinations in Two-COIN corpus 67
Fig. 29. Accuracy comparision between two different corpora .. 67
Fig. 30. Process Flow of the CEP-COIN .. 68
Fig. 31. Installing CEP-COIN Tool .. 69
Fig. 32. Using CEP-COIN Tool from context menu .. 69
Fig. 33. Using CEP-COIN from Plugin GUI .. 70
Fig. 34. Using CEP-COIN service from the JSP page .. 70
Fig. 35. Architecture of the CEP-COIN .. 72
Fig. 36. JQuery for requesting the Classification Service ... 73
Fig. 37. Server Side Processes Flow ... 73
Fig. 38. loadModel method implementation ... 74

file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892722
file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892752
file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892753
file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892754

10

List of Tables

Table 1. Conceptual Interoperability Constraints [1] ... 16
Table 2. N-Grams example ... 20
Table 3. Mashups score of API documentation .. 27
Table 4. API documentation's URL .. 28
Table 5. Data extraction sheet with example of collected data from 3 cases .. 29
Table 6. Total effort in time with respect to the document size .. 31
Table 7. Example of the data extraction sheet of the Seven-COIN Corpus .. 34
Table 8. The data extraction sheet of Two-COIN ... 34
Table 9. The distribution of API Documentation.. 34
Table 10. COINs classes distribution per each case ... 36
Table 11. Top 5 terms are frequently used per each class ... 37
Table 12. Total Ratio of the majority COINs ... 38
Table 13. Identified patterns of Not-COIN class .. 39
Table 14. Identified patterns of Dynamic class ... 40
Table 15. Identified patterns of Semantic class .. 42
Table 16. Rules Names with examples ... 49
Table 17. Model performance for classifying Seven-COIN ... 54
Table 18. Model performance for classifying Two-COIN .. 54
Table 19. Comparision between Stemming and Lemmatization in terms of F-Measure 60
Table 20. Accuracy comparison between different classification algorithms ... 61
Table 21. Accuracy comparison by using all words and top 1500 words ... 62
Table 22. F-Measure of using the WordNet with respect to non-using of WordNet 65
Table 23. Accuracy comparison between different classification algorithms ... 65
Table 24. Accuracy comparision between two different corpora ... 67
Table 25. Platform Cofiguration ... 75
Table 26. The extraction data sheet .. 83
Table 27. Part-of-speech tags used in the Penn Treebank [86] ... 84
Table 28. Top 30 frequently terms used in "Dynamic" class .. 85
Table 29. Top 30 frequently terms used in "Semantic" class .. 86
Table 30. Top 30 frequently terms used in "Structure" class .. 87
Table 31. Top 30 frequently terms used in "Syntax" class ... 88
Table 32. Top 30 frequently terms used in "Quality" class... 89
Table 33. Action Verbes ... 90
Table 34. Output/Input verbs .. 91
Table 35. Supporting verbs ... 91
Table 36. Admission verbs ... 91
Table 37. Defined Stopwords ... 92

11

Abstract

Successfully integrating software systems requires fulfilling their conceptual interoperability constraints

that restrict their state or behavior. Typically, the only source for these information that is available for third-

party clients is the API documentation. However, manually reading and analyzing the natural language (NL)

text within such API documents, which is unstructured textual content, is a tedious and time consuming task

and it requires lexical and linguistic analysis skills. Moreover, it might undergo many mistakes and misunder-

standings leading to unexpected mismatches and cost consequences to fix them. This encouraged us to provide

a means to support software analysts and the architect to help them in increasing their efficiency and effec-

tiveness for identifying the conceptual interoperability constraints automatically rather than manually from the

text in API documentations.

To achieve our goals in this research, we followed an empirical-based methodology in incorporating ma-

chine learning (ML) technologies together with natural language processing (NLP) ones. The main contribu-

tions of this thesis are wrapped within our methodology. First, we started with a manual development for a

corpus, which is a collection of relevant sentences we chose from real API documentations then we manually

classified them into different classes. This classification is based on the COnceptual Interoperability coN-

straints (COIN) model, which has seven classes (i.e. NOT-COIN, Dynamic, Semantic, Structure, Syntax, Con-

text and Quality). Then, we built rules for these classes. Afterwards, we decided to explore the potentials of

using the ML classifiers, thus we designed the classification model that defines the frequently used patterns

and terms for representing conceptual interoperability constraints in the NL text of API documents. By training

the classification model on our developed corpus. We were able to run many text classification algorithms and

we have achieved promising results F-measure of 70.0% for classifying seven-classes and F-measure of

81.9% for classifying two-classes. Finally, we implemented a plugin tool by utilizing the classifier that we

trained, so this tool allows architects to classify any texts into one of these seven classes.

Introduction

12

1 INTRODUCTION

1.1 Overview

Conceptual interoperability constraints (COINs) are restrictions on interoperable software units and their

related data elements at different conceptual levels (i.e., syntax, semantics, structure, dynamics, context, and

quality) [1]. For successful interoperations, such constraints need to be identified and fulfilled. Otherwise, they

may cause conceptual mismatches that hinder the interoperation or even produce meaningless results, and

consequently lead to expensive resolution at later project stages. Therefore, third-party clients need to effec-

tively analyze the shared documentation of external APIs. However, manual filtering of natural language (NL)

text within API documents is a tedious, exhaustive and time consuming task. To cope with these challenges,

we elaborate on Abukwaik’s [1] ideas of extracting a complementary set of conceptual constraints from text

in API documentation using machine learning (ML) and natural language processing (NLP) technologies.

Our goal in this thesis is to support software architects and analysts in performing the conceptual interopera-

bility analysis effectively, while keeping the associated cost of identifying COINs low. In our work, we follow

a systematic empirical-based methodology that has two advantages, i.e., tracing and verifying documented

results between the research phases, and repeating the defined activities in our protocol by other researchers to

address researcher bias threat to validity.

 In this thesis, we expand our previous research [2] by extracting more patterns and rules from the API

documents and investigating more text classification algorithms, therefore conducting more experiments and

then comparing results accuracy and studying their efficiency and effectiveness as well in the usage of the

automated COINs classification (which is tedious to do manually). We mainly rely on our manual classifica-

tion for the COINs as a ground truth, which we created from API documentation to be fed up to our text

classification model.

 Our previous research [2] shows an acceptable accuracy level in the classification of the COINs automati-

cally and this will benefit designers and architects in finding out COINs from any API documentation, where

it is tedious and time consuming to be performed manually.

1.2 Research methodology and contributions

In this, we followed a methodology that included the following main research tasks:

1- Reviewing the State-of-the-Art (SoA): First, a literature review to identify the existing methods and

technologies to extract conceptual interoperability constraints from NL documentation.

2- Exploratory multiple-case study: In order to find out the state of current API documentation with re-

gards to the way the conceptual interoperability constraints are documented, we analyzed multiple API

documentations (cases). Each case study goes through three main phases:

─ Data preparation for collecting evidence where text will be pre-processed into single sentences.

Introduction

13

─ Data collection starts with labeling each sentence with one of the COINs classes [1]. Then, sentences

that agree on the label are grouped together.

─ Thematic analysis for the produced groups of sentences will be conducted to find out the frequent

terms, patterns and sentence structures that will be encoded into initial themes.

3- Exploring the potentials of ML and NLP in extracting the COINs from API documentation.

Our research contributions are listed as follows:

1- Transforming raw unstructured data (i.e., text in API documents) into structured data with unified

format to be used in next research steps.

2- Building the COINs corpus (i.e. ground truth): Manually classifying the conceptual interoperability

constraints (COINs) of the collected data with the help of “Constraints of COIN Model”. [1]

3- Defining representation patterns of COINs: Manually mining and analyzing of the textual content of

the API documents in order to identify the frequently used terms and sentences structures from the

collected API documents.

4- Building the text classification model (classifier): Utilizing the obtained corpus, we designed two

different classifiers. These classifiers are used for automatically classifying the COINs.

5- Exploratory experiment: Evaluating the efficiency of the created classifiers in terms of accuracy by

conducting experiments that utilize different text classification algorithms.

6- Developing a plugin prototype, which is available to be used as web service1.

7- Parts of our presented work in this thesis has been accepted in The 38th International Conference on

Software Engineering (ICSE 2016) Companion, and will be presented during the conference that will

held on May 14-22, 2016, Austin, TX, USA [2]

1 Web service: is a Program Integration across Application and Organization boundaries https://www.w3.org/DesignIs-

sues/WebServices.html

Introduction

14

1.3 Outline

The rest chapters of our thesis are organized as the following:

– Chapter 2 presents a background on Conceptual Interoperability Constraints and its different models. It also

offers some definitions for the natural language processing, machine learning terms, and the texts classification

methods and algorithms, which are used in our proposed solution

– Chapter 3 overviews the related works that deal with our stated problem of identifying software interoperabil-

ity constraints and highlights their advantages. Afterward, this chapter explains briefly the differences between

our approach and the presented related works.

– Chapter 4 presents the research methodology that we followed in solving the problem, and describes the goals

of our research methods.

– Chapter 5 poses the first part of the research, which is a multiple-case study. We describe the study design,

results, and discussion along with the threats to validity.

– Chapter 6 presents the second research part of our study, which answers the question about the efficiency of

the natural language processing and machine learning in solving the problem of text classification. In this sec-

tion, we offer two different approaches to solve the problem and answering the research questions, with pre-

senting the results, evaluation and clarifying the efficiency of each of the two approaches.

– Chapter 7 introduces a technical solution by developing a tool prototype, in order to provide the software

architects and analysts with means to facilitate the COINs classification from any API documentation. This

section also explains in details the design, implementation, and performance evaluation of this tool prototype

– Chapter 8 presents the most important challenges and obstacles that we faced during this research work, and

how we overcame them.

– Chapter 9 presents the results that have been accomplished through our thesis in meeting the research and

answering its related questions.

– Chapter 10 introduces the future vision for extending this research from different aspects. It offers some ideas,

which might improve the performance of the automated classification model, and some other suggestions on

how to take advantage of this research in other practical area especially in industry.

Background

15

2 BACKGROUND

In this chapter, we start with introducing the definition of conceptual interoperability and the COnceptual

Interoperability coNstraints (COINs). Then, we present a basic introduction to natural language processing,

machine learning, and text classification that we have utilized through our research.

2.1 Conceptual Interoperability

In computer science, interoperability is “the ability of two or more systems or components to exchange

information and to use the information that has been exchanged.” [3] [4].

Interoperability between software systems is one of the most important modern concepts that receive consid-

erable attention recently, because of many considerations such as communication, compatibility and interac-

tion between different systems, which become very important. Besides, the interoperability is facing many

challenges and obstacles, such as technical heterogeneity (e.g., different communication protocols, data input

and output type and parameters orders) [1].

 Due to the importance of the interoperability, multiple classification-models have been proposed for deter-

mining, and organizing the interoperability levels in software systems. For example, (1) the Levels of ISs

Interoperability (LISI) [5], (2) NC3TA Reference Model for Interoperability (NMI) [6] and (3) the Levels of

Conceptual Interoperability Model (LCIM) [7]. The main importance of these models is their ability to identify

both the levels of compatibility between systems as well as the effort needed for configuring these systems in

order to work interchangeably and integrally [8].

 In our thesis, we based our research on the Conceptual Interoperability Constraints (COIN) Model [1], be-

cause it focuses on the conceptual constraints that are of our interest and because it can be applied to different

software systems (e.g., information systems, embedded systems, mobile systems, etc.).

According to Abukwaik [1] , The COINs are defined as the conceptual characteristics that govern the software

system’s interoperability with other systems. That is, wrong understanding, misassumption and misuse of these

conceptual constraints might defect the desired interoperability causing systems’ inconsistency in getting mu-

tually meaningful results and leading to serious consequences accordingly (e.g., cost increase or project fail-

ure). Obviously, explicit and clear declaration about the system COINs helps analysts in detecting the concep-

tual mismatches and thus allows for a more effective and efficient resolving for these mismatches [1].

 Table 1 represents the current set of COINs and their classes with examples. We introduce these classes

briefly here, but for more details about it, you can see [1].

COIN Classes: Abukwaik et. al. [1], defined the six-classes of the COINs as follow:

1. Syntax COINs “specify the concept-packaging methods (i.e., the conceptual modeling language) and the

lexical references used in the system. Examining the syntactic match paves the way towards investigating

the semantic one. “.

2. Semantic COINs “state semantic constraints (e.g., the measurement unit of a calculateDistance service is

km not mile), and semantic references (e.g., reference ontologies) that encode the meaning of exchanged

Background

16

data and service goals. As no reference ontology has been widely adopted yet, we consider this a theoretical

constraint which is left for future advances in the ontology research. ” .

3. Structure COINs “depict system’s elements, their relations, and their arrangements that influence the

interoperation results, e.g., interoperating with a software system without being aware of its data distribu-

tion may introduce a security threat if network links between remote sites are not encrypted. In this case,

the distribution of the system is a structural COIN. “

4. Dynamic COINs “report information about the behavior of the interoperability elements during interac-

tion. If such details are missed, they can introduce conceptual interaction flaws. For example, interoperat-

ing with a software system of regularly changing data may lead to synchronization issues if this property is

not declared and addressed properly. “.

5. Context COINs “pertain to external aspects forming the interoperation settings, i.e., user and usage prop-

erties. For example, software systems that are designed to interoperate with software systems on desktop

devices may cause display and memory issues on mobile devices.”

6. Quality COINs “capture required and provided quality characteristics related to exchanged data and ser-

vices. For example, inaccurate results may occur when interoperating. “

Table 1. Conceptual Interoperability Constraints [1]

Background

17

2.2 Natural Language Processing (NLP)

Natural Language Processing (NLP) [9] is a field in computer science that combines the usage of both

Artificial Intelligence (AI) [10] and Computational Linguistics (CL) [11]. There is a progress in researches

that aims at improving the accuracy of finding the grammatical structures of the sentences [12] [13] [14].

Below we will introduce some of the main NLP technologies, which are used in the construction of any lin-

guistic analysis system to identify the grammatical structures.

Parts Of Speech (POS) tagging is known also as a grammar classification of the words in the sentence, this

technique is used to identify the part of speech in terms of (noun, verb, pronoun, adjective, etc.) [15] [16]

Example: a sentence “the child watches the match”, here “the” is a determiner, “child” is a noun, “watches”

is a verb, “match” is a noun. For more information, see Fig. 1

Chunking is parsing a sentence into phrases and clauses, in which they are groups of interconnected set of

words with logical relation, such as verb phrase and noun phrase [17]. See Fig. 1

Fig. 1. An example of POS tagging, chunking and clause identification. [17].

Typed Dependencies [12] [14] is a technique to provide a simple description of the grammatical relations,

which are oriented in particular toward non-linguistics experts in order to perform tasks related to NLP. It

provides a hierarchical structure of the words in order to illustrate the words dependencies in a sentence with

a simple description of each dependency. For example a sentence “Bills on ports and immigration were sub-

mitted by Senator Brownback, Republican of Kansas“ is analyzed into a grammatical relations as shown in

Fig. 2 [18].

Fig. 2. Standard Stanford dependencies [18]

Background

18

Named Entity Recognition [19] is also known as entity identification, which is a technique to extract infor-

mation about words in a sentence by classifying the words based on predefined classes. These classes often

have a higher level of abstraction, and depends fundamentally on the semantic meaning of the words. For

example “USA, Germany, UK” are transformed into a word “Country”. This technique is helpful in facilitating

the semantic meaning by finding the main entity that these words belong to.

2.3 Machine Learning (ML)

It is a branch of computer science and a part of Artificial Intelligence (AI). In particular, it refers to training

the computer on specific patterns that depend on the problem domain by utilizing some of the machine learning

algorithms [20], in order to enable the automatic prediction and detection of these patterns by the machine

[21]. In this section, we introduce some of the ML text classification techniques and statistical language mod-

eling that we utilized in our research.

Text Classification (TC)

Text classification (TC) is the process of classifying sentences in documents of text into two or more pre-

defined classes (classes) [22]. In principle, TC is a subjective task, for example, when two experts (human or

artificial) decide whether to classify a sentence S in document D under class C, they might also disagree, and

in fact, this happens with relatively high frequency [23].

There are many traditional text classifier algorithms such as Naive Bayes [24] [25], Support, Vector Ma-

chine [26] [27], etc. The performance of any of these classifiers depends mainly on the quality and the quantity

of the training dataset, which is manually labeled and carefully selected to be representative as much as possi-

ble. The more proper training of labeled data the better accuracy the classifier achieves [28].

Text Classification Workflow

In Text classification, there are two main processes [29]. The first one is the training process, in which the

classifier is learned on some classified data sample. While, the second is the prediction process, in which the

classifier assigns the suitable class of a given data. It is important to mention that, before performing the

training and prediction processes, two interior procedures need to be performed on the input document, which

contains data. These two procedures are the “features extraction” and the “feature selection” that we explain

next in details. In Fig. 3, we summarize the text classification workflow.

Background

19

Fig. 3. Text Classification Workflow

Feature Extraction

It is the process of deriving features from the existing raw data [30] . The goal of the feature extraction is

to find the most representative characteristics from the original data. These features should be carefully ex-

tracted, because they have to represent the important aspects of the sentence structure, semantic, context and

all other significant information as well.

There are many different feature extraction techniques can be applied for unstructured text. Some of the com-

mon ones are called statistical language modeling techniques [31]. In these techniques, the word sequences

are assigned a statistical probability [31]. Here are some of these techniques:

1. Bag of Words (BOWs) [32] is a simple technique for text classification, in this approach, each word

in a sentence is considered as a feature and a document is represented as a matrix of weighted values

using some kind of a weighting method such as TF-IDF (Term frequency –Inverse Document Fre-

quency) [33]. However, BOWs model has some limitation like that it does not consider both the

grammar and the meaning of the sentence. This is because it ignores the words ordering and losses

the semantics of the words, but still it gives a score about the words importance in the whole document

[34]. For example: consider a sentence like ‘The software has configurations’ In BOWs, each sen-

tence is represented as a matrix of features of single separated words like "The",”soft-

ware”,"has",”configurations”

2. N-Grams is a combination representation of all of adjacent words in a sentence [35]. N can be any

number greater than zero (N > 0). Thus, 1-Gram refers to unigram that is the simplest form of N-

Gram model, and in this case, a sentence is represented by a single word. Similarly, 2-Grams stands

for bigrams, in which a sentence is represented by two sequence words together. In the same way,

3-Grams are trigrams that represents a sentence by three sequence words together. An example of

Class of d1

Feature

Extractor

Feature

Selector

Document

d1

Class of d2
Classifier

Model

Feature

Extractor

Feature

Selector

 Document

 d2

Machine

Training

Algorithm

<Input>

<Input>

Training

Prediction

<Output>

Extracted

Features

Selected Fea-

tures

Extracted
Features

Selected

Features

Background

20

each of these aforementioned N-Grams is explained on a sentence “The screen is red” as shown in

Table 2.

Table 2. N-Grams example

unigram ‘The’ , ’screen’ , ’is’ , ’red’

bigrams ’The screen’ , ‘ screen is‘ , ‘is red’

trigram ’The screen is’ , ’screen is red’

3. Skip-gram is a generalized form of N-Grams with a goal to discover word representations that help

in predicting words in the same context in the sentence, which incorporates data sparsity problems

[36]. The more data become available for the Skip-gram model, the more the information the model

can extract.

For example the sentences:

- "I have to return"

- "I have never had to return"

- "I finally have to return"

- "I do not have to return"

All these sentences are grouped into the skip-gram "I have to return", which means they have similar

shape.

Choosing the best techniques for feature extraction depends primarily on the problem domain, for example:

sentiment classification2 might give high performance if the features are extracted by using the Bag of Word

technique [32], while news classification using N-Gram technique could achieve better results [35]. Shortly,

the high-quality features means better results!

Feature Selection

Feature selection is the process of choosing only the most important features from the extracted features

[37]. This is performed by eliminating the redundancy and neglecting the less useful features, while keeping

the semantic unchanged [38]. In general, there could be millions of features, especially when working on a

huge amount of textual data, for example working on topics modeling [39], in which some texts are given and

then identifying what the topic of these texts is, or in another words: what the texts talking about. In Fig. 4, we

picture the feature selection concept.

Fig. 4. Feature Selection workflow

2 Sentiment Classification (SC) is about assigning a positive, negative or neutral label to a piece of text based on its overall

opinion. [92]

Feature
 Selector

Extracted features

Selected features

https://en.wikipedia.org/wiki/N-gram#Skip-gram

Background

21

Applying feature selection has advantages like [40]:

1. Increasing the model prediction accuracy (by avoiding overfitting). Overfitting is a problem of getting

inaccurate prediction when testing the classifier. In this problem, the error rate of prediction increases in

the testing data set but decreases in the training data set. It happens when the size of the training data set is

too small compared with the complexity of classification model [41].

2. Reducing time cost to construct a model and speeding up the model prediction process.

3. Providing a deeper understanding of the process infrastructure that generated the data.

Related Work

22

3 RELATED WORK

In this thesis, we present an approach to automatically extract conceptual interoperability constraints, the

COINs, from NL text in API documents via NLP and ML technologies. Many recent researches proposed

identifying specific types of constraints from API documentation in different ways. Therefore, in this chapter,

we describe briefly the similar works to our research.

Wu et al. [42] identified parameters’ dependency constraints from multiple library resources, mainly web

services and SDK documentation that are expressed in natural language. They proposed an approach called

INDICATOR (INference of Dependency ConstrAinTs On parameteRs) that collects information from API

documentation about operations’ definitions and parameters’ descriptions. Their approach has two stages: the

first stage is documentation analysis to extract only the constraints candidates, and the second stage is con-

straints validations, in which the final results are only the validated constraints.

Pandita et al. [43] proposed an approach to automatically infer the formal method specifications from nat-

ural text of API documents. They introduced a new technique that assists client-code developers to correctly

use methods specifications in terms of method prerequisites, and what is expected after method is executed

(i.e., so-called pre-conditions and post-conditions). This approach helps to ensure a legal usage of code con-

tract to avoid inconsistency, misleading and prevent exceptions and bugs during code development cycle. The

idea of the approach is based on reading the whole method descriptions from API documents including: sum-

mary, argument description, return description, exception description, and remark description. Then, they use

a shallow parser to parse the specification in First-Order-Logic FOL [44] expressions, which are extracted

using natural language processing NLP Parser. NLP is used as a core-intermediator to analyze and process the

code-content and textual content to construct code-contract as a final result.

Zhong et al. [45] proposed an approach called Doc2Spec to recognize and infer resource specifications. In

particular, they developed a tool for Doc2Spec that is mainly based on linguistic analysis of the API Docu-

ments using natural language processing NLP techniques. The significant importance of their tool is to dis-

cover and extraction resources’ specifications as a first step and match them with the code-implementation as

a second step. The basic functionality of Doc2Spec is to detect both known and unknown bugs in code auto-

matically, which are the consequences of disregard API specifications or misused resources by developers.

For example: developer might not close resources properly after the end of their usage. Such tools can play an

essential role to avoid errors and refine code quality in implementation phase.

Dekel and Herbsleb [46] introduced an approach for improving API documentation usability by extracting

and highlighting the important part of documentation, which includes the sensitive information, instructions,

and guidelines to push them into a programming IDE editor. They developed eMoose tool [46], which searches

and automatically tracks the content of several major APIs documentation to find the important hidden infor-

mation to assist developers. These information are called directives that hold method requirements and optimal

method invocations. eMoose offers to developers a list of method recommendations in terms of knowledge

items, constraints, method invocation dependency, and side effects based on the code context. This allows

Related Work

23

developers to work in a safe mode by protecting them against the risks of improper implementation. In addi-

tion, the tool increases developer’s awareness about the future problems by preventing errors, runtime fails, or

encountered code violations, which are potentially hard to predict during code implementation phase. Hence,

the tool positively affects software performance and consistency.

Some of the aforementioned approaches like Wu et al. [42] and Pandita et al. [43] used NLP with rule-based

identification, while Zhong et al [45] used ML to identify the name of the restricted entities, but not the re-

striction themselves. In our research, we elaborate on Abukwaik et al [1] idea of extracting different type of

conceptual constraints utilizing both NLP and ML technologies together. In addition, we extracted different

types of constraints as mentioned before (Not-COIN, Dynamic, Semantic, Syntax, Structure, Context and

Quality) constraints. In our research, we followed the empirical methodology [47].

Research Methodology

24

4 RESEARCH METHODOLOGY

In this chapter, we describe our research methodology, starting with the research methods in section “3.1

Research methods” Then; we define our research goals and questions in section “3.2 Goals and Research

Questions”.

4.1 Research methods

In this thesis, we followed an empirical-based methodology in exploring the potential of automating the

extraction of COINs from API documents to support architects and analysts in performing their conceptual

interoperability task with the lowest cost possible.

The empirical research provides us with many advantages like allowing us to trace and verify the obtained

results between the research tasks and their results. Moreover, it enables other researchers to repeat measure

and extrapolate the results independently. Therefore, we performed our research in two parts as follows:

Research Part One (multiple-case study). In the first part of our empirical research, we systematically ex-

plored the nature of COINs in many API documentations to explore their current state in terms of their fre-

quently used terms and patterns. Accordingly, we manually built our COINs corpus that holds each investi-

gated sentence in the API documents along with its COIN class.

Research Part Two (ML for automatic COINs Extraction). In the next part of our research, we used the

results of the previous research task in directing our investigation about the capabilities of NLP (in representing

the observed patterns and rules obtained from analyzing the COINs) and the power of ML (in learning these

modeled patterns and rules towards full automation of identifying the COINs in text). Finally, with exploratory

experiments we evaluated the accuracy of our produced ML model. This helped us in deciding how useful our

automatic extraction idea for software architects and analysts in performing effective and efficient conceptual

interoperability analysis.

4.2 Goals and Research Questions

In fact, this work is extending the proposed idea of Abukwaik et al. [5] of automating the extraction of

COINs from their API documentation. Hence, we formulated our main goal in terms of GQM-goal template

[48], which in turn supports the more comprehensive purposeful goals as the following:

─ To: support the conceptual interoperability analysis task

─ For the purpose of: improvement

─ With respect to: effectiveness and efficiency

─ From the viewpoint of: software architects and analysts

─ In the context of: analyzing text in API documentation within integration projects

We translate this goal into the following research questions that we try to answer within our research:

 RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the

NL text of API documentation?

Research Methodology

25

Rational: This question aims at building an accurate Ground Truth (i.e. COINs corpus) that represents the

first building block of our automatic extraction idea. To answer the research question we need to collect

adequate data manually (i.e., textual sentences from API documents), then we analyzed it, and identified a

set of patterns and extraction rules for the found COINs. The metric we used for this research question are

frequent terms and sentence structures.

 RQ2: How effective and efficient would it be to use Natural Language Processing (NLP) along with Ma-

chine Learning (ML) technologies to automate the extraction of COINs from the text in API documenta-

tions?

Rational: This question aims at tackling the challenges of extracting the COINs from NL text by building a

machine model for the COINs to utilize it within already existing ML classification algorithms. The metric

we used for this research question are Accuracy, Recall, Precision, and F-Measure.

Research Part One: Multiple-Case Study

26

5 RESEARCH PART ONE: MULTIPLE-CASE

STUDY

In this chapter, we present the first part of our research starting with its design in section 5.1, in which we

defined a research method. Then we present the execution of our designed multiple-case study in section 5.2.

Then we discuss the results.

5.1 Study design (Holistic multiple-case study)

Study goal. The first part of our research has a goal of answering the first research question that we mentioned

in chapter 3, which is “RQ1: What are the frequently used patterns in specifying the conceptual interoperability

constraints COINs in API documentation?”

In order to do so, we need to investigate the current state of COINs (in terms of representation, context and

recurring patterns) by exploring real-world API documentation. This investigation facilitated discovering the

infrastructure of the building units, which help in finding out the representative terms, structure and patterns,

which is very important to be used in ML later on in the next chapter.

Research method. Accordingly, we decided to perform a multi-case study with literal replication of cases

from different domains. Such study allows us to recognize and perceive variety cases, with important evidence

to get with generalizable and more powerful results as drawn independently across replicated cases. Fig. 5

illustrates the Holistic multiple-case study and other cases types [49].

Fig. 5. Holistic multiple-case study [49]

Analysis unit. Our case study has a holistic design, which means that we have a single unit of analysis, which

is “the sentences that include COIN instances”.

Study protocol. Our multiple-case study protocol includes three main activities, which are case selection, case

execution, and cross-case analysis that we detail in the execution section 4.2 “Study Execution”.

Research Part One: Multiple-Case Study

27

Design of the data extraction sheet. We designed a “data extraction sheet” that we implemented as an MS

Excel sheet (see appendix 7.3). The extraction sheet consists of the following fields:

Sentence ID: it is an auto number; and each sentence has a unique number.

Sentence: the textual value of the sentence that we call the “unit of analysis”, which may include a COIN

instance.

COIN type: one of the classes of the conceptual interoperability constraints COIN: {Semantic, Dynamic,

Syntax, Context, Quality} and {Not-COIN}.

Source API document: to record the original API document name.

5.2 Study Execution

 In this section, we present the execution of our designed multiple-case study.

Case selection

We have chosen six API documentations, which are: SoundCloud, GoogleMaps, Skype Instagram, Ap-

pleWatch and Eclipse-Plugin Developer Guide. We considered different characteristics and criteria for the

choosing like:

─ Published statistics3 on API mashups score, which represents the API popularity in terms of API usage

by developers to build web services or even applications. As shown in Table 3.

 Table 3. Mashups score of API documentation

API Documentation Mashups

SoundCloud 34

Google Maps 2580

Skype 30

Instagram 64

─ API type: we select different API types in terms of web service and platform. Our selection was as the

following (Four API documents from web services and two API documents from platform. Since, web-

services covers different services than the platform does.

─ API domain: we also consider the diversity of the selected APIs document to cover different domains

such as social activates by selecting Instagram API documentation, and from communication services,

we selected Skype, and from developing environment; we selected two different APIs, which are Ap-

pleWatch and Eclipse-Plugin Developer Guide).

Finally, we summarized our selection cases in Table 4. Which represent all API domains and its API docu-

mentations, and for each API documentation we added it API link in order to extract these document from its

source, as we will explain in next section Case Execution.

3 Programmable web: http://www.programmableweb.com/apis/directory

http://www.programmableweb.com/api/soundcloud
http://www.programmableweb.com/api/google-maps
http://www.programmableweb.com/api/instagram

Research Part One: Multiple-Case Study

28

Table 4. API documentation's URL

API Domain Documentation Links to process

Web-Service

SoundCloud
https://developers.soundcloud.com/docs/api/guide

https://developers.soundcloud.com/docs/api/reference

GoogleMaps https://developers.google.com/maps/web-services/

Skype https://msdn.microsoft.com/en-us/library/office/mt124991.aspx

Instagram https://instagram.com/developer

Platform API

AppleWatch

https://developer.apple.com/library/prerelease/ios/documentation/Gen-

eral/Conceptual/WatchKitProgrammingGuide/#//ap-

ple_ref/doc/uid/TP40014969-CH8-SW1

Eclipse -Plug-in Developer Guide

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.plat-

form.doc.isv%2Frefer-

ence%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html

Case Execution.

 In this stage, we performed for each case the following three steps: data preparation, data collection, and data

analysis as shown in Fig. 6

1. Data Preparation

In this step, we started by fetching the API documents from their online resources in order to process their

content, which means that we must a content with pure text data only. In our selected documents, we focused

on retrieving the parts or sections that were rich in the textual content about the conceptual interoperability

constraints. For example, the Overview, Introduction, Guide, API reference, and Summary webpages of the

documentation website. The final output of this preparation is a filtered text. Thus, we performed this prepa-

ration as the following into two procedures:

─ Automated Filtering

2- Data
 Collection

3- Data
Analysis

1-Data
Preparation (Auto-

mated & Manual Filter-
ing)

Fig. 6. Case execution process

https://developers.soundcloud.com/docs/api/guide
https://developers.soundcloud.com/docs/api/reference
https://developers.google.com/maps/web-services/
https://msdn.microsoft.com/en-us/library/office/mt124991.aspx
https://instagram.com/developer
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html

Research Part One: Multiple-Case Study

29

We implemented a simple PHP code using Simple HTML DOM Parser 4 library to filter out the API

documentation from noise. (i.e., headers, images, tags, symbols, html and JavaScript code) and to keep

only the textual content. In our implementation, we pass an API document link as input for the PHP

method in the abovementioned library as the following: file_get_html (link) and we get back the output

as a text content. Then, we keep the output as a text file to be manual reprocessed, as we explain in next

step (manual Filtering).

─ Manual Filtering

The automated filtering described in the first process is limited to detect some usual and known patterns of

noise, which do not satisfy other noise cases like text mixed with pure code that occurs frequently in many

API documentations. There are also some irrelevant textual sentences that do not match our interest in

conceptual constraints and are hard to be filtered automatically (i.e., references like “see also” and “for

more information”, “copyrights”, “related topics”, “titles”, etc.). Additionally, such sentences could mislead

the machine learning in our later research steps. Therefore, we handled these sentences by filtering them

out manually for more relevant and accurate data.

2. Data Collection

In this step, we cut the textual input resulted from previous step into single sentences within the data

extraction sheet that we created according to the design we mentioned in section 4.1 Study Design. This

resulted in a structured and organized sheet (see the excerpt example of the sentence retrieval output in

Table 5).

Table 5. Data extraction sheet with example of collected data from 3 cases

Sentence id Sentence COINS Type
API Document

(case)

1 All images must reside in the Watch app bundle. AppleWatch

2 A user is encapsulated by a read-only Person object. Skype

3 All rate limits on the Instagram Platform are applied on

a sliding 1-hour window.

Instagram

We filled the data extraction sheet gradually as we execute each selected case. That is, at the very beginning

we had only the sentences retrieved from the API documentation of SoundClound case. After analyzing the

collected data [see section 2.3], we started the execution of the next case, prepared its data and retrieved its

sentences into the data extraction sheet and so on so forth.

Note: We developed a data storage, which is a local repository to store and organize all of the following data

 The original HTML pages of the pre-processed documentation

 The excel sheet for each case (each API documentation)

 Other used artifacts (the links of the API documentation)

4 Simple HTML DOM: http://simplehtmldom.sourceforge.net/

Research Part One: Multiple-Case Study

30

This storage has some advantages like enabling us to access the data sources without reconnecting to their

online sources and re-retrieving it from there. This guaranteed data consistency and independency. One re-

markable feature for this scenario is that, researchers can easily replicate and re-perform our study on the same

data. It is worth mentioning that, when we revisited the API documentation on their online sources, we noticed

that, there were some updates and removals in the contents, which means that, in the long-term a lot infor-

mation may be changed. Therefore, it would be an impossible task for future researchers to perform any kind

of replication for our research. Fig. 7 shows our data repository content within the preparation and the data

collection processes.

Fig. 7. Data Storage along data preparation and collection

3. Data analysis

In this stage, we performed our content analysis method on the collected data from a case under execution

as we depict in Fig. 7 and explain in detail below.

Incremental building of the ground truth.

We manually investigated the meaning of each sentence collected in the data extraction and we checked if

it could be mapped to any of the classes covered by our interpretation criteria. This interpretation criteria is

the “Constraints of the COIN Model [1], which directs our decision about classifying each sentence as having

a COIN instance of a specific class (i.e., syntax, structure, dynamic, context, semantic) or as not having a

COIN instance at all (i.e., Not-COIN).

Obviously, this manual analysis took too much mental effort and time to analyze each of the 2283 sentences

that we have in our data storage. In fact, this is one of the most challenging phases of our research and it

HTML

Web-Browser

HTML Content

Data Repository <Output>

Direct HTTP

Access

API
Documentation

URL
<Input>

Raw Text

Data Collection
(extraction sheet)

URLs TXT XLS

Manual Filtering

Automated Filtering

 (PHP DOM Parser)

Research Part One: Multiple-Case Study

31

represents a corner stone in our research. The result of this step in each case was an increment in our ground

truth (i.e., COINs corpus), which we will adopt later in the second part of our research. Hence, this process

was performed by two researchers, each classified all sentences for each case separately (i.e., each sentence

was classified twice in a separated way). In multiple discussion sessions, the two researchers compared their

decisions; resolved conflicts based on consensus, and stored the classification decision in the extracted sheet.

We summarize our spent effort in manual filtering and classification tasks in terms of time per document as

shown in Table 6 and Fig. 8. Total effort in time with respect to the document size.

According to the information, we can easily conclude that there is a relation between the efforts in term of

time and the size of the documents being analysed. Hence, we can observe that Eclipse Plugin Dev documen-

tation has the largest size compared with the others. SoundCloud on the other side took much time compared

with its document size, because it is the first case study that we analysed, and we spend much time to record

the correct COIN type for each sentence.

Table 6. Total effort in time with respect to the document size

API Document
Total

 number of sen-
tences

Document
 manual filtering

(Minutes)

Sentence Classi-
fication (Hours)

Total
efforts
(Hours)

Total
efforts

(Minutes)

Sound Cloud 219 40 7 7.7 460

GoogleMaps 473 60 5.5 6.5 390

AppleWatch 360 60 7 8.0 480

Eclipse Plugin Dev 651 60 11 12.0 720

Skype 325 30 4 4.5 270

Instagram 253 20 4.5 4.8 290

Total 2281 270 39 43.5 2610

Fig. 8. Total effort in time with respect to the document size

0

100

200

300

400

500

600

700

800 Total number of sentences Total efforts (Minutes)

Research Part One: Multiple-Case Study

32

Incremental identification of the COINs’ patterns.

The final procedure in the case execution was manually analyzing its sentences that were classified as hav-

ing COIN instances, in order to identify the patterns and detection rules of each COIN class. In specific, we

investigated each sentence of the case and started taking our notes on any observed frequent occurrence of

words, sentence structures, or any other noticeable format. We were also looking for any correlation between

the sentences’ phrases for each COIN class. In addition, we stored these identified patterns into a different data

sheets as we will explain in more details in next section. Actually, we incrementally refined these patterns and

discovered more patterns as we execute each case. Fig. 9 shows the content analysis method ‘process flow’

that we followed in our research to identify the patterns and also to create the ground truth (i.e. corpus). While

Fig. 10 shows a snapshot of examples of the manual identification of the patterns in GoogleMaps.

Fig. 9. Content analysis method 'process flow'

Fig. 10. Snapshot of the manual identification of the patterns

Patterns

Rules

Read sen-
tence j

Doc. n

Sentence 1

Sentence 2

Sentence n

Document i

Manually cat-
egorization

Constraints of

COIN Model [1]

Manually identifica-
tion of Patterns &
Detection Rules

Data Storage

Text of API documents <Input>

Sentence j Ground Truth

“COINs Corpus” <Output>

<Output>

Research Part One: Multiple-Case Study

33

Cross-Case Analysis.

Ground Truth (COINs Corpus)

Two COIN Corpora. After executing all cases, we arranged the incrementally contributed ground truth

(i.e., COINs Corpus) into two different versions as the following:

 Seven-COIN corpus: in which, each sentence belongs to one of Seven-COIN classes (i.e., not-COIN, dy-

namic, semantic, syntax, structure, context, or quality).

 Two-COIN corpus: in which, each sentence belongs to one of two COINs classes so called: ‘Two-COIN’

instead of seven classes. That is, each sentence can be either a class of COIN (i.e.; dynamic, semantic,

syntax, structure, context, quality) or a class of not-COIN. In fact, the Two-COIN corpus is derived from

the Seven-COIN corpus by abstracting six of its classes into one class called 'COIN'. The aim behind de-

riving this new abstracted corpus is for later training of our ML model on two classes instead of seven, as

this would achieve better accuracy results (we explain this issue in details in chapter 5). Fig. 11 shows the

algorithm of creating the Two-COIN corpus from Seven-COIN corpus, while Fig. 12 shows the content of

each two corpora.

Fig. 11. Pseudo code of deriving Two-COIN corpus from Seven-COIN corpus

Fig. 12. Seven-COIN corpus and Two-COIN corpus structure

Here, we explain an example of the results of the created Two-COIN corpus from Seven-COIN corpus using

the above mentioned algorithm as the following: Table 7 shows an example of the data extraction sheet of the

Seven-COIN corpus Two-COIN corpus

 not-COIN

 not-COIN

 dynamic
 semantic
 syntax
 structure
 context
 quality

COIN

Research Part One: Multiple-Case Study

34

Seven-COIN as input Corpus, while Table 8 shows an example of the resulting data extraction sheet, which is

the Two-COIN Corpus as output.

Table 7. Example of the data extraction sheet of the Seven-COIN Corpus

Table 8. The data extraction sheet of Two-COIN

Case-share of sentences in the Ground Truth (COINs Corpora).

We have summarized this information in Table 9, which shows the number of sentences collected from each

case.

Table 9. The distribution of API Documentation

API Domain Documentation # Sentences

Web-Service

SoundCloud 219

GoogleMaps 473

Skype 325

Instagram 255

Platform API
AppleWatch 360

Eclipse-plugin 651

Total 2283

In Table 9, we can see that, the less number of sentences belongs the SoundCloud API documentation,

because this documentation has some limitation of the offered services compared with other services like

Sentence
id

Sentence COIN Type API Document

1 All rate limits on the Instagram Platform are applied on a sliding 1-hour
window.

not-COIN
Instagram

2 When it is finished manipulating the object, it releases the lock. dynamic Eclipse

3 A user is encapsulated by a read-only Person object. structure Skype

4 indoor indicates that the calculated route should avoid indoor steps for
walking and transit directions.

syntax Google-MAP

5 the connection ids can be used to share tracks and playlists to social net-
work.

semantic SoundCloud

6 Directions may be calculated that adhere to certain restrictions. context Google-MAP

7 your interfaces need to display information quickly and facilitate fast
navigation and interactions.

quality AppleWatch

Sentence
id

Sentence COIN Type API Document

1 All rate limits on the Instagram Platform are applied on a sliding 1-hour
window.

not-COIN Instagram

2 When it is finished manipulating the object, it releases the lock. COIN Eclipse

3 A user is encapsulated by a read-only Person object. COIN Skype

4 indoor indicates that the calculated route should avoid indoor steps for
walking and transit directions.

COIN Google-MAP

5 the connection ids can be used to share tracks and playlists to social net-
work.

COIN SoundCloud

6 Directions may be calculated that adhere to certain restrictions. COIN Google-MAP

7 your interfaces need to display information quickly and facilitate fast
navigation and interactions.

COIN AppleWatch

Research Part One: Multiple-Case Study

35

GoogleMaps or even AppleWatch. We also observed that the maximum number of the sentences obtained

from Eclipse-plugin, obviously its API documentation is very huge, because there are many methods used for

developing plugins inside eclipse platform.

COIN-Class share in the Ground Truth (COIN Corpora). The COIN-class (e.g., Not-COIN, dynamic,

semantic, syntax, structure, context, and quality) is distributed over the Ground Truth in the COIN corpora

non-equally. There are some classes like not-COIN, dynamic, semantic contribute of the majority of the

COINs which is 91% of the total classes. For example, we observed that the Not-COIN class constitutes

about 42% of the total classes, while the dynamic class constitutes about 25% and the semantic class con-

stitutes about 24% of the total classes in the Ground Truth (COIN Corpora). On the other hand, we observed

there are a few contribution of the other classes like (structure, syntax, quality and context). They comprise

together about 9% of the total classes. These statics are illustrated in Fig. 13. While, Fig. 14 demonstrates

the distribution of COIN-Classes in the second corpus (Two-COIN corpus).

Fig. 13. Seven-COIN instances distribution

Fig. 14. Two-COIN instances distribution

COIN-Class share in each case. We have deeply investigated this information and documented the results as

shown in Table 10 and Fig. 15. These statistics reveal much information about the structure of each API doc-

ument. We mean by structure is the contents of each API documents in terms of COINs types (e.g. Not-COIN,

dynamic, semantic, structure, syntax, context, quality).

Research Part One: Multiple-Case Study

36

Table 10. COINs classes distribution per each case

COIN Type Not-COIN dynamic semantic structure syntax context quality

SoundCloud 46.1% 26.9% 18.3% 4.6% 3.2% 0.9% 0.0%

Google Maps 63.0% 11.2% 13.1% 1.7% 6.6% 2.1% 2.3%

AppleWatch 40.8% 26.1% 25.0% 6.1% 1.1% 0.3% 0.6%

Eclipsse-plugin 29.0% 32.4% 30.1% 6.5% 0.9% 0.0% 1.1%

Instagram 41.6% 29.8% 25.1% 2.0% 0.0% 0.0% 1.6%

Skype 36.6% 23.7% 29.5% 6.2% 2.8% 0.0% 1.2%

Grand Total 42.0% 25.0% 24.0% 4.7% 2.5% 0.6% 1.2%

Fig. 15. Cases distribution over COINs

0

50

100

150

200

250

300

350

N
u

m
b

er
 o

f
C

O
IN

s

context

dynamic

not-COIN

quality

semantic

structure

syntax

Research Part One: Multiple-Case Study

37

COIN patterns

“RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the

NL text of API documentation?”

What is patterns?

First, we define patterns as any frequent used of both terms and sentence structure. More specifically, a

frequent term is any word is a used repeatedly in some sentences and occurs normally individually (single

word per single sentence), for example the terms XML, iOs, XPath, HTTP, etc. are words used many times

in different sentences in some COINs classes like Not-COIN class. While, sentence structure is more specific

terms than just single term in a sentence. They constitute the formation/construction of a sentence, for example

there are sentences begin with the phrase “if” and the clause “, then”. Another example some sentences begins

with pronouns like ‘You’ and followed by ‘Modal Verb’ like you must or it must or we must, etc. these kinds

of patterns we define them as sentence structure, because they are not a single term.

After collecting the data and classifying it for each case, we focused on identifying the significant patterns

of the text that would put us on the right road towards machine automated identification of COINs in text on

behalf of human architects and analysts. As we mentioned earlier in section 4.2 that the analysis process was

performed in a gradual manner (i.e., case after case). In each case, we extracted the noticed patterns for each

COIN class.

Having this being said, in this cross-case analysis, we studied the textual content of all cases that is gathered

within the Seven-COIN Corpus more deeply and carefully. That is, we mined the content of the corpus sen-

tence by sentence and word by word. The more data we studied, the more patterns (terms and sentence struc-

tures) we discover, since every case study has different aspects and conceptual constraints.

Such a work is a tedious manual task that took us about 20 days and 8 hours per a day to accomplish. Some

sentences required us to read them more than once to comprehend the accurate meaning first, and then extract-

ing the cross-case patterns, proportional relationships, and similarities. This cross-case analysis helped us to

refine our identified patterns. In the other words, the more COINs we include in the cross-case analysis, the

more accurate and significant patterns we discover.

─ Finally, we created a list of the top used terms in each class as shown in Table 11. For a complete list of

the most frequently used terms per each class, please see appendix (B. Top frequently terms), which we

created during our analysis process.

Table 11. Top 5 terms are frequently used per each class

Dynamic Semantic Structure Context Syntax Quality

job user interface direction calculate user

user plug content time-share route direction

app app app available indicate provide

client provide contain bicycle specify access

interface platform collection drive user api

Research Part One: Multiple-Case Study

38

It is important to mention that, we focused on identifying patterns for three COIN classes (i.e., Not-COIN,

dynamic, semantic). This is simply because they have the three biggest shares of sentences in the Seven-COIN

corpus. In total, these three classes constitute about 91% of sentences in the corpus as shown in Table 12.

Table 12. Total Ratio of the majority COINs

COIN Type Ratio

Not-COIN 42.0%

Dynamic 25.0%

Semantic 24.0%

Total 91.0%

Next, we show our identified patterns for these three classes with detailed examples. Note: For all three classes

we created a table, in which we highlighted the detected pattern in red color within the example.

Patterns of the Not-COIN class. In this class, we observed the following patterns:

─ Frequent terms: The predominant part of terms in this class are the Technical Keywords, which are

mainly abbreviation of technical terminology and programming keywords. For example (XML, iOS,

XPath, JavaScript, ASCII, KB, MB, etc.). In our corpus there are about 30.7% (of the Not-COIN class)

has technical keywords. This means that, there are about 295 COINs of 960 COINs have one or more

technical term (see Table 13 the first row).

For further clarification, Table 13 is composed from five columns. First columns is a pattern type (e.g.

frequent terms or sentence structure). Second column is a pattern name (e.g. technical keywords, sen-

tence begin with some term, sentence contains some terms, etc.). Third column is example of the pattern

term. Forth column is a real example from the corpus, Fifth column is the total number of the occurrence

of the pattern in the corpus with respect to the COIN class and last column is the percentage of the

occurrence of the pattern in the corpus with respect to the COIN class. Note that in the fifth column the

cell values do not add up to 100% as there are minor patterns that take a share of it but we do not cover

them in the table.

─ Sentence structures: the second part of the patterns are sentence structure, as aforementioned these struc-

tures are illustrated as shown in all rows of Table 13 except the first row.

In this regard, we observed that, there are relatively two significant patterns in this class, which are:

 Sentences contain variables, symbols and tags. For example a sentence “XML responses consist of

zero or more <route> elements.” It is classified as Not-COIN, as you can see contains some tags

and technical terms. Such tags and the special characters like ‘/’,’\’,’<’,’>’ constitute 13.9% from

the whole not-COIN class.

 Sentences begin with the terms, like “for example”, ” for information” and sentences contains terms

like “see”, “learn”, “let’s” all together constitute 12.8%.

Research Part One: Multiple-Case Study

39

Table 13. Identified patterns of Not-COIN class

Pattern Type
Pattern
Name

Example COIN with pattern example
COINs
count

COINs %

Frequent
Terms

Technical
keywords

XML, iOS, XPath,
JSON, OSGi, SDK,
HTTP, GET, POST,
etc.

these resources can be accessed
and manipulated using the HTTP
methods GET, POST, PUT and
DELETE.

295 30.7%

Begins with

for example
for example, a user may enter an
address as '5th&Main St.'

123 12.8%

for information

for information on how to present
new interface controllers, see inter-
face Navigation.

For more information about notifi-
cation payloads, see Specifying a
Notification Payload for Testing.

contains

see

for a full list of properties that can
be set on a sound resource, see the
/tracks endpoint reference.

See Transit Details below

See also: /me endpoint reference
documentation.

Learn Learn how to get a key.

let’s
Let's look first at the scopes defined
by the platform runtime:

the following
Currently the following activity

types are supported:
62 6.5%

Begins with figure shows
Figure shows the default JSON file
that comes with your project.

10 1.0%

Ends with : as follows
the help command supports -scope
argument, which should be used as
follows:

85 8.9%

Contains
variables names ,
path tags: ‘/’ , '<' ,'>'

Neither requires an access_token or
client_id.

133 13.9%

Patterns of the dynamic class. In this part, we extracted the most used patterns in terms of terms and

sentence structures.

─ Frequent terms: during our studying and analysis of the dynamic COINs, we observed that, this class

contains many activities, events that depict the data and process flow, and commands to perform direct

tasks or activities. Therefore, we came up with a special list of terms and we called it “Action Verbs”.

Example of these verb terms includes but not limited to (create, use, access, request, etc.). Actually, they

represent about 35.8% of the total number of sentences with dynamic COINs. This means that, there are

204 COINs from 570 COINs have at least one or more Action Verb. See Table 14 (first row). We also

provide a complete list of the Action Verbs in the please see appendix (B. Top frequently terms).

Research Part One: Multiple-Case Study

40

─ Sentence structures: as we explained in the beginning of this section, the sentence structures belong to

different terms. This class has specific patterns in terms of conditional statements, method call, and var-

iables. See Table 14.

Table 14. Identified patterns of Dynamic class

Pattern
Types

Pattern Name Example COIN with pattern example
COINs
count

COINs %

Frequent
terms

Action Verbs

create, use, request, access,
plug, lock, include, set-up, run,
start ,call-up ,redirect. Please
see the Action Verbs list in the
appendix for more details.

instead, create a complementary experi-
ence to your iOS app.

204 35.8%

Sentence
structures

Begin with
Conditional state-
ment

if , when, once, while, as long as
,unless

if a command name is specified, the help
message for this command is displayed

137 24.0%

note that as long as the sound is public,
you will only need to provide a client_id
when creating a client.

once the state is finished it is ready to be
embedded or streamed.

when building a valid URL, you must en-
sure that it contains only those charac-
ters shown above.

while it owns this rule, it is only allowed
to modify files within that directory sub-
tree.

Unless otherwise stated, the values null
and the empty string are equivalent to
omitting the property.

Contains
Conditional
statement

if , when, once, while, as long as
,unless

the request may succeed if you try again.

100 17.5%

this feature is available only when con-
necting through telnet or ssh.

you should exercise extreme caution
when acquiring and releasing scheduling
rules using such a coding pattern.

Begin with

You + Modal Verb (e.g must,
have to, should , will, may, can)

you can follow a user using the /me/fol-
lowings endpoint.

34 6.0%

Research Part One: Multiple-Case Study

41

you must have an existing iOS app to cre-
ate a Watch app.

you should now store the access token in
a database

imperative(commands verbs)

click the Store icon to navigate to the
Skype client s entry.

19 3.3%
Build a dynamic view of a user s person
list with content from the Groups collec-
tion.

e.g. (to + verb …… , verb)

to end a subscription, call the subscrip-
tion.dispose method.

22 3.9%
to create a new notification interface,
drag a notification interface controller
object to your storyboard file

Method call

1. call, invoke, use
method/function.

2.
3. function expression e.g.

get(),set(a)

you create sets using our API by creating
a client and calling the post method with
the /playlists endpoint and information
about the set, including a list of track ids.

68 11.9%

Contains After/Before as connector

after a job finishes running, its reference
to the progress group is lost.

37 6.5%

the setuser call must also be made be-
fore the job is scheduled.

Begin with note(that)

note if you are going to stream from our
API you need to attribute properly.

16 2.8%

note that in this case, object_id is the tag
to which you would like to subscribe.

Contains via/through
this feature is available only when con-
necting through telnet or ssh.

20 3.5%

Contains Variables names: ‘_’ , ‘/’

Some API only require the use of a cli-
ent_id.

38 6.7%
you can also optionally include a
transit_mode and/or a transit_rout-
ing_preference.

Research Part One: Multiple-Case Study

42

Patterns of the semantic class. In semantic class, we observed different kinds of terms and sentence struc-

tures. Table 15 explains these observed patterns with examples as the following:

- Frequent terms (first three rows in Table 15): In this class, we classified some frequent terms into

three different lists as the following: Output/Input verbs, Supporting verbs, and Admission verbs. See

Appendix (Table 34. Output/Input verbs, Table 35. Supporting verbs and Table 36. Admission verbs).

The total summation of these patterns equals (103+90+74=267), which constitute 48.7% of the over-

all semantic class.

- Sentence structures (all rows in Table 15 except the first three columns). In which there are sentences

contains some structure like the sentence contains “by” and followed by “Gerund”, or there are sen-

tences begin with “for” and followed by “Noun” or “Gerund”. As another example, there are sen-

tences contains “so that”, ”because”, ”in order to”.

Table 15. Identified patterns of Semantic class

Pattern
Type

Pattern
Name

Example COIN with pattern example
COINs
count

COINs %

Frequent
terms

Output/Input
verbs

return, receive, display, response,
send, notify retrieve, select, read, re-
cover, access, fetch, upload, down-
load, submit, recall, share, result

Thus the help command will display help
only for the commands with the specified
scope.

103 18.8%

Supporting
verbs

support, provide, Suggest, give, pro-
pose.

A dynamic notification interface lets you
provide a more enriched notification ex-
perience for the user. 90 16.4%

Admission
verbs

allow, enable, admit, let, give, grant,
permit, facilitate, authorize, prevent,
stop, avoid

The console allows custom command
completers to be provided.

74 13.5%

Sentence
structures

Contains by + {Gerund}

Action buttons save time for the user by
offering some standard responses for a
notification.

29 5.3%

Begin with for + {Noun or Gerund}

For remote notifications, add the title
key to the alert dictionary inside the pay-
load. 7 1.3%

Contains for + Noun/Gerund

Eclipse provides a common user inter-
face (UI) model for working with tools.

30 5.5% The plug-ins that make up a subsystem
define extension points for adding be-
haviour to the platform.

Research Part One: Multiple-Case Study

43

You can search for directions for several
modes of transportation, include transit,
driving, walking or cycling.

Begin with

if you+…., will + (be) / you can

if you want to load the library separately
from the HTML code, you can call the
oEmbed endpoint with the omitscriptpa-
rameter. 13 2.4%

in (that)(this) case

In that case, the platform uses some heu-
ristics to determine which one should be
selected. 4 0.7%

it + modal verb + (be)

It should be stable enough so that indus-
trial strength tools can build on top of it.

5 0.9%

note(that)

note: Tapping your app s glance interface
always launches the app. 8 1.5%

(to + verb) …… , verb

to embed instagram content you need to
first visit the post on the web and get the
embed code. 7 1.3%

(use)(using) + …. + to

use promise chaining to prevent applica-
tion logic from changing the state of an
object until the object is initialized and
ready 26 4.7%

when

When configuring the interface, specify
the JSON data file containing the test
data you want delivered to your inter-
face. 12 2.2%

you can, you could

you can cancel a presence subscription
for a given person at any time. 29 5.3%

Contains

in order to, so that, because

Many developers use this flow because
of its convenience.

16 2.9%

it should be stable enough so that indus-
trial strength tools can build on top of it.

we will gloss over a lot of details in order
to get the plug-in built and running.

(user)(you)(we) + modal verb

With a dynamic interface, you can dis-
play more than just the alert message.

37 6.8%

Research Part One: Multiple-Case Study

44

5.3 Discussion

After we reviewed the results and statistics from table (Table 13. Identified patterns of Not-COIN class,

Table 14. Identified patterns of Dynamic class and Table 15. Identified patterns of Semantic class) which

contains the frequent patterns in the sentences and the ratio of each pattern that occurs in each COIN class.

(Not-COIN, Dynamic and Semantic) classes. Thus, we observed that, our Seven-COIN Corpus has imbalance

amount of sentences from each COIN class as the following:

 The majority of the COINs about 34.4% of the total COINs are classesified as not-COIN class, the reason

is because there are many technical description and many technical terms used in the API documentation.

 The minority of the COINs are classesified as (context, structure, syntax, quality), because these kinds of

COINs describe the service usage context, terminology definitions or quality attributes of services or sys-

tems, which are rarely mentioned in the APIs.

 COINs of type (dynamic and semantic) are distributed equally. The dynamic class has a ratio of 28.3%,

while the semantic class is about 27.4% from the whole COINs.

The second observation is that: the statistics in (Table 10. COINs classes distribution per each case) reveals

very important information about the COINs distribution over each case study. For example:

 SoundCloud: is easy to read and to find out the conceptual constraints. Most of the sentences in the API

documentation are short and direct to understand, which does not confuse the reader to extract any of the

COINs. In addition, this documentation has a small size compared with the other API documentation in our

corpus.

 The GoogleMaps APIs has the majority of not-COIN class of 298 from the total number of GoogleMaps

COINs which are 473, which means there are more than 62% of the COINs in GoogleMaps are only belongs

not-COIN class. And this is very huge ratio compared with its COINs size and also with the other cases.

This is because the GoogleMaps API documentation has a lot of technical terms. Moreover, there are few

concepts, background paragraphs. GoogleMaps APIs seems to be more technical than conceptually.

 Eclipse-Plugin has a balanced COINs distribution, especially for (not-COIN, dynamic, semantic). In addi-

tion, it has the highest number of COINs of type structure of 42 COINs. Therefore, we can conclude that,

these balances are due to many reasons:

o Eclipse-Plugin is the largest APIs we extracted and it contains 651 COINs.

o It has many sections for describing the concepts and the abstract level of knowledge, such as: abstract,

introduction, and overview section.

o It has less technical information.

 AppleWatch: has very well structural paragraphs, even it is long documentation, but it is easy to track and

read. In addition, this documentation has three main classes. These are, Not-COIN of 40.8%, Dynamic of

26.1% and Semantic of 25.0%.

Research Part One: Multiple-Case Study

45

5.4 Threats to validity

Generalizability

To avoid having results applicable for one case of API documents and to make our findings generalizable,

we decided to include multiple cases in our search for the COIN patterns in textual sentences. That is, we have

chosen six API documentations, which are: SoundCloud, GoogleMaps, Skype, Instagram, AppleWatch and

Eclipse-Plugin Developer Guide. Moreover, we have collected data from another API documents which is

from Amazon Storage Service S3, but unfortunately, we ran out of time to analyze it, although we have pro-

cessed it. In general, we have covered 2283 sentence from the six cases, which gave us a good impression of

the typical amount of COINs as well as their distribution in the API documents.

Completeness

Due to time limitations, we were unable to analyze a large number of API documents despite of its promi-

nent role in finding out more patterns. However, we have selected inclusive parts of the large API documen-

tations (e.g. in the API document of Eclipse, we covered the Plug-in part that has about 651 sentences).

In fact, manual processing of data takes a very long time, and the reason behind that is due to the need firstly

to cleaning data from noise (such as images, tables, symbols, etc.) and then organizing paragraphs into short

sentences, and after that we analyzed these sentences manually to extract patterns, which we build the rules

based on it, then we fed it up to the classification model. The accuracy of the automated classification model

affected significantly by the quality and quantity of this data.

Researcher bias

In this thesis, we built our corpus in a way that guarantees results accuracy and impartiality. Accordingly,

the manual classification process. The manual classification process is a process of identifying the proper

COIN class (i.e. Not-COIN, Dynamic, Semantic, Syntax, Structure, Context and Quality), which is performed

through a manual labor by reading the sentence and understand the meaning using of the Constraints of COIN

Model [1]. Understanding the sentence correctly plays an important role in determining the right COIN class,

and that the

In our research, the manual classification process was performed separately by two researchers from the Soft-

ware Engineering Research Group (AGSE) of University of Kaiserslautern. Each researcher classified the

retrieved sentences from the API documents independently. Our process flow for the document classification

is shown in Fig. 16

Research Part One: Multiple-Case Study

46

Fig. 16. The classification process performed by two different researchers

The classification processes were performed in four stages as the following:

First: Both researchers started classifying the sentences of each API documents based on the COINs sheet

model [1] as shown in Table 1.

Second: After classification and in multiple discussion sessions, the researchers compared their classifica-

tion decisions. For conflicting classifications, they created a "non-agreed list” to be re-discussed and re-clas-

sesified later and continued comparing the rest of the COINs and kept them in an "agreed list". Then, the

researchers revisited the "non-agreed list", discussed and resolved based on consensus.

We evaluated the accuracy of this process by using agreement percentage [50], which was almost 75%.

Agreement Percentages is shown in We evaluated the accuracy of this process by using agreement percent-

age [50], which was almost 75% that we obtained using the following formula:

𝑃𝐴 =
𝑁𝐴

𝑁𝐴+𝑁𝐷
 × 100 (1)

Where PA refers to the percentage of agreement, NA the number of agreements, and ND No the number of

disagreements [50].

Third: Collecting the final classified document into one final data sheet, that was the input for all the later

analysis activities. It was used to discover the patterns as we described previously in section 5.2 and was used

to feed up our ML model as we explain later in the next chapter.

Constraints of
COIN Model

<categorization
criteria>

Manual
Categorization

Classified
Document

Manual
Categorization

Classified
Document

Uncategorized
document

<Input>
<<input>>

Final Categorized
 Documents

<Output>

Discussion

Not agreed
Categorization

Discussion &
 resolution

Uncategorized
document

<Input>
<<input>>

Agreed
Categorization

Researcher 1

Researcher 2

Research part two: Automatic identification of COINs using ML and NLP

47

6 RESEARCH PART TWO: AUTOMATIC

IDENTIFICATION

In this part of our research, we aim at answering the second research question, which is:

“RQ2: How effective would it be to use Natural Language Processing (NLP) along with Artificial Intelligence

(AI) technologies to automate the extraction of COINs from API documentation?” Please see

 Fig. 17.

Fig. 17. 'Process Flow' of the first machine learning classification approach

To achieve this, we used two different approaches to investigate the potentials of using technologies from

machine learning and natural language processing. The first approach is Rule-based classification system using

NLP with ML. While, the second approach is ML classifiers using Bag-of-Words model.

In this chapter, we explain each approach in details showing the exploratory experiment configuration,

execution, and performance results in terms of accuracy.

6.1 First Approach: Rule-based Machine Learning Classification

 Within this approach, we aimed at investigating the benefits of utilizing our manually identified patterns

through NLP technologies in extracting the representative features of the textual sentences in the COIN Corpus

as a matrix of attributes. For this goal, we adapted and extended our discovered patterns (which we observed

in our multi-case study) into rules that we could use for training a machine learning model.

Rule construction using NLP

As we mentioned earlier, we identified the frequently used terms and sentence structures for the main three

COIN classes (Not-COIN, Dynamic, and Semantic).

 In this class, we observed the following patterns:

Frequent terms: The predominant part of terms in this class are the Technical Keywords, which are mainly

abbreviation of technical terminology and programming keywords. For example (XML, iOS, XPath, JavaS-

Research part two: Automatic identification of COINs using ML and NLP

48

cript, ASCII, KB, MB, etc.). In our corpus there are about 30.7% (of the Not-COIN class) has technical key-

words. This means that, there are about 295 COINs of 960 COINs have one or more technical term (see Ta-

ble 13 the first row).

 For further clarification, Table 13 is composed from five columns. First columns is a pattern type (e.g. fre-

quent terms or sentence structure). Second column is a pattern name (e.g. technical keywords, sentence begin

with some term, sentence contains some terms, etc.). Third column is example of the pattern term. Forth col-

umn is a real example from the corpus, Fifth column is the total number of the occurrence of the pattern in

the corpus with respect to the COIN class and last column is the percentage of the occurrence of the pattern

in the corpus with respect to the COIN class. Note that in the fifth column the cell values do not add up to

100% as there are minor patterns that take a share of it but we do not cover them in the table.

Sentence structures: the second part of the patterns are sentence structure, as aforementioned these structures

are illustrated as shown in all rows of Table 13 except the first row.

In this regard, we observed that, there are relatively two significant patterns in this class, which are:

Sentences contain variables, symbols and tags. For example a sentence “XML responses consist of zero or

more <route> elements.” It is classified as Not-COIN, as you can see contains some tags and technical terms.

Such tags and the special characters like ‘/’,’\’,’<’,’>’ constitute 13.9% from the whole not-COIN class.

Sentences begin with the terms, like “for example”, ” for information” and sentences contains terms like

“see”, “learn”, “let’s” all together constitute 12.8%.

 We improved and reformulated these observed patterns. That is, we involved a wider range of terms and

sentence structures by utilizing both the observed (terms, patterns and rules in the multi case study) and the

“Constraints of COIN Model”. Based on this, we constructed the rules needed in the Rule-based classifica-

tion approach. This rule construction was performed by utilizing NLP techniques (i.e., sentence tokenizing,

stemming, stopwords removal, part of speech recognition, N-Grams). In our research, we used NLTK (i.e., a

leading platform for building Python programs to work with human language data). Table 16 summarizes

our rules with examples for more than 13 rules, but we described the most 13 significant ones, and these

rules are (Definition, Goal, Conditional, Explanation/Example, Method Call, Modal Verb, Resource, Struc-

ture, Technical Term, Variable, Warning, Output/Input and Action Verb)

Research part two: Automatic identification of COINs using ML and NLP

49

Table 16. Rules Names with examples

Rule name Example of sentences satisfying the rule

1 Definition oEmbed is an open standard to easily embed content from oEm-

bed providers into your site

2 Goal Background actions launch the containing iOS app in the back-

ground so that it can process the action

3 Conditional if a command name is specified, the help message for this com-

mand is displayed.

4 Explanation/Example for example, you can use this to protect against CSRF issues.

5 Method Call in order to embed a player widget using JavaScript SDK, you can

call SC.oEmbed() function

6 Modal Verb you can also get a list of comments for a specified sound

7 Resource artifacts for each tool, such as files data, are coordinated by a

common platform resource model.

8 Structure Fundamentally, a bundle is just a collection of files (resources

code) installed in platform

9 Technical Term instead, create a complementary experience to iOS app.

10 Variable Some API only require use of a client_id.

11 Warning do not assume access_token is valid forever.

12 Output/Input on success, function returns true.

13 Action Verb to perform a task, a plug-in creates a job then schedules it. // see

Appendix

1- Definition: This rule is implemented to check the sentence grammar or structure looking for defini-

tions. This rule extends the linguistic rules that are stated in [51], to cover more cases that what we

observed in our multiple-case study. For instance, we included additional patterns for sentences in-

cluding definitions like “is called as”, “is known as” and “is declared as”. This rule is mapped to

Syntax COIN.

2- Goal: We established some rules to discover if a sentence is stating a goal. For this purpose, we

implemented a method that utilized NLTK5 & Python6. For example, a sentence that contains terms

like: (so that, in order to, to +verb + any word(s) +’,’ + any verb, etc.). This rule is mapped to Semantic

COIN.

Examples: a sentence: “a client must have a user_name and a password in order to log in to the

server”.

3- Conditional Statement: This rule detects the preconditions by checking if the sentence begins with

a conditional clause that starts with like (if, when, once, while, until) and its other clause begin with

‘,’ + then. This rule is mapped to Dynamic COIN.

4- Explanation/Example: This rule detects if the sentence contains some kind of further explanation or

examples. There are special words that we observed them to be used in such statements like: for

example, as an example, for instance, etc. This rule is mapped to Not-COIN.

5 NLTK is a leading platform for building Python programs to work with human language data. http://www.nltk.org/
6 Python is a programming language developed under an OSI-approved open source license, making it freely usable and

distributable. https://www.python.org/about/

Research part two: Automatic identification of COINs using ML and NLP

50

5- Method Call: This rule aims at discovering the statements that has function calls. We developed a

regular expression rule to detect if the sentence contains a function signature (e.g., Class.setText())

or some keywords (e.g., call, invoke, function, method, etc.). This rule is mapped to Dynamic COIN.

6- Modal Verb: This rule aims at detecting modal verbs from the sentence. This rule is mapped to

Dynamic COIN.

7- Resource: This rule aim at detecting statements about required resources to use a function. We de-

fined a list of keywords, which are used to indicate resources words. Some instances of these key-

words in our list are (access, client, file, network, disk, and more.) This rule is mapped to Dynamic

COIN.

8- Structure: This rule aims at finding any structure design decisions declared in the textual sentences.

Hence, we created the list of top 500 keywords for this rule based on the terms of the “Data Structures

and Algorithms in Java, 6th Edition” [52]. These keywords list include (e.g., database, inherit, over-

ride, implement, extend, etc.). This rule is mapped to Structure COIN.

9- Technical term: This rule aims at detecting technical terms like any keywords looks like abbreviation

such as (XML, XPath, SQL, SSL, etc.). For this purpose, we use a regular expression (e.g., word with

all capital letters or/and words with short characters and capitalized like ABC, SSL, etc.). This rule

is mapped to Dynamic COIN.

10- Variable: This rule aims at finding any variable in the sentence. This rule is developed by using

regular expression, in which a given sentence is checked whether it contains any word represents a

variable (i.e. client_id, _parameter, user_name, etc.). This rule is mapped to Dynamic COIN and Not-

COIN.

11- Warning: This rule aims at detecting sentence that contains warning statements (i.e. take care, pay

attention, be aware, be careful, etc.). In this case, we defined a list of terms that contains similar

meaning of warning. This rule is mapped to Semantic COIN.

12- Output/Input: The rule aims at detecting the activities of type input or output. We developed a

method to check our predefined list, which contains keywords like (return, output, display, throw,

etc.). This rule is mapped to Semantic COIN.

13- Action verb: This rule is used to detect action verbs that describe activities (which we noticed to

appear frequently in Dynamic COINs. For this purpose, we defined a list for these verbs (i.e. run,

complete, open, process, start, etc.). For complete information about the Action Verbs, please see

Appendix (Table 33). This rule is mapped to Dynamic COIN.

Exploratory Experiment

After having our rules ready, we conducted the exploratory experiment to see the potential that Rule-based

classification can bring to our goal to automate extracting the COINs from API documents. We performed this

experiment in two phases as the following:

Phase 1: Preparing the training data set. We aim by this phase at generating a data set to be fed back as a

training set to the classification model, which in turn, train on it and later on predicts the right COIN Type.

Bellow, we describe the process of this phase as the following:

Input: The Seven-COIN corpus

Research part two: Automatic identification of COINs using ML and NLP

51

Process:

- For each sentence in a corpus

1- If the rule is satisfied by a sentence, then the method for that rule return 1,

2- Otherwise return 0.

However, in some cases, methods might return integer value greater than 1, which is a summation

of how many times the term in a sentence occurs. For example: in case of the rule “Technical

Term”, the method is developed to scan the sentence and return the total number of technical terms

(i.e. SQL, XML, iOs, etc.), which can be any number greater or equal to 0.

Output: The result of this phase is a matrix of rules and sentences.

This means, for each sentence it gets a score for each of the rules as seen in Fig. 18, which shows the

snapshot of only the first 8 rules of the matrix for seven sentences.

Fig. 18. Snapshot of an excerpt of the rule matrix

We also show in Fig. 19 the distribution of our rules over the Seven-COIN classes.

Research part two: Automatic identification of COINs using ML and NLP

52

Fig. 19. Rules distribution over the COINs Classes

It can be noted from Fig. 18 some rules apply to all COIN Classes, but the decision is not based on one rule

satisfaction, but on all rules together.

Generally, we can observe that different COIN classes satisfy more than one rule. For example, all COIN

classes share rules on structure keywords and technical terms. On the other hand, each COIN class has some

special rules that is satisfies unlike the other classes. For example:

- Syntax COINs: "Definition" rule is one of the predominant rules of this COIN class compared to the

other classes.

- Structure COINs: “Structure” rule is the mainly satisfied rule.

- Semantic COINs: This class has a balanced distribution between three main rules (Goal, Condi-

tional, and Explanation/Example).

- Quality COINs: As we have a few instances of this class (i.e., 28 sentences only), we could not de-

termine the exact features or rules for this COIN class.

- Not-COIN: This class mostly satisfies the “Technical term” and the “Conditional” rules. It also sat-

isfies the “Goal” rule to some extent.

- Dynamic COINs: There are many instances of this class that satisfies the “Conditional” sentence

rule, “Resource” terms, and “Action verb” rules.

- Context COINs: This COIN class is similar to the Quality COIN class in terms of the few number

of instances. Hence, we do not have enough data (i.e., 13 sentences only) to decide on the rules it

satisfies more frequently. For this limited instances we noticed they satisfy the “Conditional” rule.

Phase 2: Selecting ML classification algorithms. Based on our literature review and deep investigating for

the different existing ML algorithms that are specifically used for text classification, we found that Naïve

Bayes (NB) [25], and Support Vector Machine (SVM) [26] are the most effective and recommended ones

Research part two: Automatic identification of COINs using ML and NLP

53

[53] [54] [55]. Nevertheless, our curiosity made us decide to try the different versions of Naïve Bayes (i.e.,

Complement Naïve Bayes [56], Naïve Bayes Multinomial updatable [57], Naïve Bayes Multinomial [58], Na-

ïve Bayes Updatable [59]). In addition, we included other algorithms like Decision Tree (J48) [60], Random

Forest Tree [61], Simple Logistic [62], Logistic Regression [63], and K-Nearest Neighbor (KNN) [64].

Phase 3: Configuring and running tests for the ML classification algorithms. Having the classification

algorithms selected, we trained the ML classification model using the matrix that we produced in phase 1. The

test was run on the two versions of our COIN Corpus (i.e., the Seven-COIN Corpus and Two-COIN Corpus).

For the activities in this phase, we used Weka 3.7.13 7 to train and test the classification models.

1- Seven-COIN classification experiment run.

 In this experiment run, we trained the classification model using the rules’ matrix that resulted from

phase 1. Then we ran the selected above mentioned text classification algorithms.

2- Two-COIN classification experiment run.

Similarly, in this experiment run, we trained the classification model using the rules’ matrix that re-

sulted from phase 1. Then we ran the selected above mentioned text classification algorithms.

Generally, for each test run, the corpus was divided into a training and testing sets. The training set we used

for teaching the classification model about the rules, while we used the testing set for determining the model’s

classification accuracy. In specific, we used the k-fold cross-validation [65] [66], in which the data set in our

corpus is divided into k subsets. Then, (k-1) subsets of the data set are used for training and one subsets used

for testing. As we used k = 10 for 10 rounds, then we got in each round 9 subsets are used for training the

classification model and only one subset is used for testing. Finally, we computed the average of the 10 runs.

Phase 4: Evaluating the experimental results. Next, we briefly introduce the metrics we used in evaluat-

ing our experimental results to evaluate the results. Then, we use them in interpreting the results in details.

Evaluation Metrics

Recall, Precision and F-Measure are the most commonly used metrics for evaluating the accuracy of text

classification models [67]. Hence, we used these metrics, which we explain below, for evaluating the results

of all our tested ML classification algorithms.

Recall (R) is the ratio of the records that are correctly predicted to the total number of relevant records in

the data set. Recall is a fractional number between 0 and 1 and usually expressed as a percentage [68] and is

calculated using the following formula:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
=

#𝑇𝑃

#𝑇𝑃 + # 𝐹𝑁
 (2)

Precision (P) is a ratio of the documents that are correctly predicted to the total number of relative and

irrelative records that are retrieved from the data set [68]. Precision is a fractional number between 0 and 1

and expressed as a percentage and is calculated using the following formula [68]:

7 Weka is a collection of machine learning algorithms for data mining tasks. http://www.cs.waikato.ac.nz/ml/weka/

Research part two: Automatic identification of COINs using ML and NLP

54

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑜𝑓 (𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 + 𝑖𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
=

#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
 (3)

F-Measure (F) is a combination of recall and precision. F-Measure is a popular evaluation metric for im-

balance problem, in which the data set are not classified equally (e.g., some of the classes are more than the

others) [69] [70]. F-Measure is calculated using the following formula:

𝐹 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

Results and Evaluation

As mentioned earlier, we performed the experiment on two versions of the corpus, first one on the Seven-

COIN Corpus, and the next on the Two-COIN Corpus.

With regards to the Seven-COIN classification results, we found that the best F-Measure was achieved by

Logistic Regression, Recall of 47.0%, Precision of 57.7% and F-Measure of 47.6% (See Table 17).

Table 17. Model performance for classifying Seven-COIN

Classification Algorithm Recall Precision F-Measure

Logistic Regression 47.0% 51.7% 47.6%

Naïve Bayes 50.2% 45.8% 46.5%

J48 49.8% 46.1% 46.5%

Complement Naive Bayes 45.6% 49.2% 46.4%

Neural Network 49.2% 45.8% 46.2%

Random Forest Tree 47.1% 44.4% 45.0%

KNN, k=18 49.6% 46.7% 43.7%

Support Vector Machine 49.6% 43.9% 43.7%

Similarly, we found that the best results of the Two-COIN classification was achieved by Logistic Regression,

Recall of 66.5%, Precision of 66.1% and F-Measure of 65.7% (See Table 18).

Table 18. Model performance for classifying Two-COIN

Classification Algorithm Recall Precision F-Measure

Logistic Regression 66.5% 66.1% 65.7%

Naïve Bayes 66.0% 65.5% 65.3%

Complement Naive Bayes 64.3% 64.8% 64.5%

J48 64.5% 64.0% 63.9%

Neural Network 63.4% 62.7% 62.4%

KNN, k=18 62.3% 61.9% 62.0%

Random Forest Tree 62.2% 61.9% 62.0%

Support Vector Machine 64.0% 65.6% 59.1%

Research part two: Automatic identification of COINs using ML and NLP

55

Conclusion on rule-based classification

According to the results we obtained from these experiments, we conclude that:

- The accuracy of the first model (i.e., Seven-COIN classification) gave a maximum accuracy F-

measure of 47.6%, which is obtained by applying the logistic regression algorithm.

- On the other hand, the second model (i.e., Two-COIN classification) gave a little bit improved ac-

curacy with F-measure of 65.3%, which is achieved using a Naïve Bayes algorithm.

To the best of our knowledge, these results can be improved if we have a larger data set (i.e., more manu-

ally classified sentences in the corpus). That is, our contributed corpus has a small size (less than 3K of

COIN sentences). Still, we believe that these achieved results are promising and this encourages us to inves-

tigate different strategies to optimize the results by using other possible text classification algorithms.

Research part two: Automatic identification of COINs using ML and NLP

56

6.2 Second Approach: Bag-of-Words-based Machine Learning Classification

In this section, we explore another approach for automating the extraction of COINs from textual content

of API documentation by using ML classifiers along with the Bag-of-Words (BOWs) model [32].

As we saw in the previous section, Rule-based ML classification using our manually identified rules did

not provide high accuracy results. Hence, we expanded and intensified our efforts toward exploring other text

classification strategies. By reviewing further research papers in machine learning and text classification meth-

ods, we found that there is a representation model for the data that could show better effectiveness and effi-

ciency in classifying natural language text called Bag-of-Words. In BOWs model, each sentence is represented

as a collection of words after tokenizing it using natural language processing techniques. For example, a sen-

tence like “This is a model” is represented as {‘This’, ‘is’, ‘a’, ‘model’}. Thus, each word represents an inde-

pendent feature. The co-occurrence of words is weighted using a model called TF-IDF (i.e., Term frequency

–Inverse Document Frequency) [33] that we will explain in more details later in this chapter.

Accordingly, we decided to adopt the BOWs modeling in our research to see its potentials in classifying

the sentences of API documents into the COIN classes. This required us to follow the process as shown in Fig.

20, which we have published in a paper related to the thesis work [2]. In next sections, we describe the details

for each step of this process.

Fig. 20. 'Process Flow' of our model [2]

Data preparation

In this stage, we prepare the data set (i.e., the sentences in the Seven-COIN Corpus) by transforming the

format and cleaning the content that we describe next.

Format transformation. We transformed the format of the sentences in the corpus from CSV (i.e. Comma

Separated Values) to ARFF (i.e. Attribute-Relation File Format8).

Content cleaning. For performance consideration of the classifier, some sentences needed cleaning to re-

move the technical noise that existed in the non-natural language text (e.g., http links, resources and path,

service location, variable definitions, or functions call). Such technical noise exists frequently in API docu-

ments text to explain the technical usage of the offered APIs. Therefore, we developed some text manipulation

techniques to reduce the technical noise as the following:

8 ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attrib-

utes. URL:https://weka.wikispaces.com/ARFF+(stable+version)

Research part two: Automatic identification of COINs using ML and NLP

57

- Hyperlinks: basically, we defined a regular expression to replace all hyperlinks that might exist in the text

with a constant term (i.e., ‘Hyperlink’). That is, the whole textual content is checked to find if it has any

hyperlink to replace it with this constant using the following regular expression that we defined:

(https?:\/\/)?(www\.)?(ftp\:\/\/)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,256}\b([-a-zA-Z0-

9@:%_\+.~#?&//=]*)+[^\(| ^\)]

The above regular expression is used to detect hyperlinks like:

https://www.facebook.com, http://yahoo.com, www.google.com, http://speedtest.tele2.net .

- Resources’ path: API documents might contain some paths that point to particular resources, locations, online

data, or further information regarding the usage of the API. Such technical noise is very similar to the hyperlink

noise. In order to manipulate this noise, we also developed another simple regular expression as the following:

\w*(((\/)|(\\))+(.*))+

The above regular expression is used to detect hyperlinks like:

file/document/ , /location/windows/abc , \server\pc\ , \\file\\system.

- Variables: Any expression of words in the form of X_Y or _X can be considered as variable and here we

replace it with a constant term “VARIABLE”. For that, we developed the following regular expression:

\w+_\w+ and \s\w+\/\w+\s

As an example: "if neither time specified, departure_time defaults now (that is, departure time defaults

current time)." After replacement by our regular expression, it looks like " if neither time specified, VARIABLE

defaults now (that is, departure time defaults current time)."

- Function Call: In some sentences, there are a piece of code used as examples to explain how the function

or method works, this code contain a function call. Hence, we developed a simple regular expression to capture

this pattern as the following:

 \w*\.*\w+\(\w*\)

Example: set(), get(), add(a,b), print(x).

https://www.facebook.com/
http://yahoo.com/
http://www.google.com/
http://speedtest.tele2.net/
file://///file/system

Research part two: Automatic identification of COINs using ML and NLP

58

Perquisites input for our ML classification model.

In our study, we observed that the conceptual constraints are the non-technical information that their main

concern is not “how” to implement, configure, or deploy the service or system.

According to these observations in our experiments, we ignored some technical information from the anal-

ysis process. For example, we did not include pure code, and partially technical terms explanation in some

section. Especially in development pages, examples and technical help which in general, they have non-repre-

sentative information about concepts, same as the (mixed-code with technical terms), or non-meaningless sen-

tences (basically: our model is not customized for grammar/spelling checking). Thus, we assume that the

grammar of the document’s content should be well formed with the right spelling. Therefore, textual input to

our model should be correct, complete, and meaningful sentence(s).

In addition, we also exclude headers, paragraph titles, footers, image/figure description, and table descrip-

tion, which mostly do not help to detect any useful information about the system/service concept. In addition,

we did not include “text-as-link”, and some sentences that contain one or more function(s)/variable(s)/param-

eter(s)/link(s) or/and sentence that contains many non-natural language (NL) terms. As an exception, in some

cases we included some sentences, which contain non-NL, like functions/parameters/etc., sentences that have

technical keywords, etc., only if the context is about a concept or non-technical constraints.

On the other hand, we excluded sentences from the SDK documentation part of the API documentation.

This due to our awareness of the technical dominance in this part of the API documents, which we observed

and concluded through the manual analysis, processing, and classification of sentences in out multiple-case

study. Beside, our prior knowledge, excluding this technical part allows better learning for the ML classifiers

and consequently better classification results later.

Exploratory Experiment

In this section, we conduct two different experiments, one for Seven-COIN classes and the second for the

Two-COIN classes. These experiments are performed to measure the performance of the text classification

algorithms in terms of accuracy.

Phase1: Applying NLP Pipelines.

The purpose of NLP Pipelines (processes/tasks) is to select the most presentative features (keywords) by first

cleaning corpus from noise (insignificant words like Stopwords, punctuation, etc.) and then grouping similar

words into one form using stemming, in which the word will reduced to its root (e.g. Recording  record,

operation  operate, playing play, etc.). For more details, our Seven-COIN corpus contains 2283 COINs

(sentences), these COINs consist of 41,287 words, which in average there are 18 words per one COIN (sen-

tence). Hence, we aim at representing each COIN with the most informative words and filtering out the less

important words, thus NLP pipelines helps to perform such a task if we applied the previous tasks, then we

will get only small number of features (keywords) compared with if select all words in the corpus. Then, by

using TF-IDF (which is the last process performed on the resulting features from the previous processes above-

mentioned), then these features will be weighted according to its importance in the corpus.

Research part two: Automatic identification of COINs using ML and NLP

59

The input is: the sentences in the corpus.

This is to transform the textual data set into a mathematical representation that is the required form to be fed

up to the classification model. More specifically, the input to this phase is the whole manipulated Seven-COIN

corpus resulting from the previous data preparation.

The output is: a weighted matrix of the weighted features.

Note that our NLP pipe lines are performed completely using Weka v 3.7.11 19 as the following:

- Word tokenizing: Once we obtained the sentence from the previous procedure (i.e., Sentence Tokenizing),

we splitted each sentence into a subset of individual words. For example, the following sentence S1=”All

images must reside in the Watch app bundle” will be represented as a subset of keywords such as S1’ = { ‘All’,

’images’, ’must’, ‘reside’, ’in’, ’the’, ’Watch’ ,’app’ , ’bundle’}.

- Lowering cases: A word can be written in two different forms, but still the same. For example, at the begin-

ning of the sentence, the first letter of the word is always in uppercase, while, in the middle of the sentence the

same word would be written in lowercase. However, in machine learning technology, text classification algo-

rithms do not consider such cases as the same word. This affects the performance results of classifiers in a

negative way. Thus, we normalize all words to be in one form (i.e., lowercase). As an example, the word ‘All’

is converted to ‘all’ and the word ‘The’ is converted also to ‘the’. Therefore, in this phase, we converted the

all the words in Seven-COIN Corpus into the lowercase form.

- Stopwords Eliminating: Stopwords refer to the commonly used words that are considered as a conjunctive

words, prepositions, adverbs, or pronouns. In our work, we adapted the default English Stopwords list, which

is a list of English words are used in Weka. Hence, we adapted this list after we performed some experiments.

The experiments were conducted many times by training a classification model on the data set of the Seven-

COIN corpus, each time we used different Stopwords, until we got a best accuracy. For example, we found

that some words like ‘if’, ’then’, ‘while’, ’when’ and modal verbs: ‘could’, ‘can’, ‘would’, ‘will’, ‘shall’,

‘should’, ‘may’, and ‘might’ should not be considered as Stopwords because it can change the accuracy of the

classification model based on our observation during the experiments we conducted. The reason behind this is

that, these words are used so frequently in the sentences within our Seven-COIN corpus especially for the

following COIN classes: dynamic, semantic, and Not-COIN. Hence, if we exclude these words, then it will

decrease the accuracy of the classification model. Thus, we defined a special Stopwords list for our model that

does not include the modal verbs and some temporal conjunction, see Appendix (Table 37. Defined Stopwords)

- Words stemming: One useful and important NLP technique is to stem a word into its root that is considered

to be the primitive lexical unit of any similar words [71]. Hence, we applied the stemming to aggregate all

similar forms of the words into one unified form. This process reduces the number of keywords that share a

similar root. After reviewing the comparative study of Stemming Algorithms [72], we had tested the perfor-

mance of many stemming algorithms like Porter (Snowball) stemmer [73], Lovins stemmer [74]. Then, we

decided to choose Snowball stemmer due its performance in terms of F-measure when used in classifying the

COINs.

9 Weka: http://www.cs.waikato.ac.nz/ml/weka

Research part two: Automatic identification of COINs using ML and NLP

60

It is worth to mention, that we conducted an experiment to compare between the effects of the stemming

and the lemmatization processes [71] on that accuracy of the classification algorithms (i.e., NB [25], SVM

[26] and Complement NB [56]). The experiment results showed that the stemming process was better than

lemmatization in terms of the classification models accuracy in terms of f-measure as shown in Table 19.

Table 19. Comparision between Stemming and Lemmatization in terms of F-Measure

Process
F-Measure

NB SVM Complement NB

Snowball Stemming 62.8% 59.0% 70.0%

Lemmatization 60.7% 57.6% 66.5%

- Feature extraction using N-Gram combination: At this phase, we aimed at extracting the features from the

sentences in the Seven-COIN Corpus. At the beginning, we considered each single word in the sentence as a

feature (Uni-Gram), but after performing a number of experiments, as we will show later, we decided to use

N-Gram [35] where N is between 1 and 3. That is, we considered the features as each single word, each com-

bination of two consecutive words, and each combination of three consecutive words. Such technique enables

us to preserve the words’ order and to keep the context of the sentence as well.

Terms weighting: In this stage, the whole COINS corpus is transformed into a mathematical model that is a

matrix. In this matrix, the header contains all the extracted features from the previous phase, while each row

represents a sentence in the corpus. Thus, each cell [row, column] holds the weight of a feature in the sentence.

For achieving the best weighting, we used Term Frequency-Inverse Document Frequency (TF-IDF) [33].

Evaluation Metrics

We used the same metrics as the ones we used for the Rule-based classification experiment. That is we used

in the first Approach: Rule-based Machine Learning Classification in the evaluation section as the follow-

ing:

We used k-fold cross-validation, in which the data set in our corpus is divided into k subsets. Then, (k-1)

subsets of the data set are used for training and one subsets used for testing. As we used k = 10 for 10

rounds, then we got in each round 9 subsets are used for training the classification model and only one

subset is used for testing. Finally, we computed the average of the 10 runs.

Results and Evaluation.

In this section, we present the results that we have obtained after we have conducted the experiment on two

different types of corpus, Seven-COIN corpus and Two-COIN corpus by applying different classification al-

gorithms. And finally, we perform a statistical comparison between these results.

Research part two: Automatic identification of COINs using ML and NLP

61

Classification accuracy achieved by the different ML Classifiers (Seven-COIN Corpus case): The re-

sults showed different values for different text classification algorithms. For classifying seven classes, we

have achieved the best accuracy using 1,2,3-Gram with recall of 70.2%, precision of 72.4% and f-measure of

70% by using ComplementNaïveBayes algorithm (see Table 20). While, in the second place comes Na-

ïveBayesMutinomialupdatable with accuracy recall of 65.1%, precision of 66% and f-measure of 65.4%. The

rest of the results show accuracy f-measure between 62.8% and 52.3%. The worst results were obtained by

Decision Tree J48 and KNN where (K=1, 2) algorithms. These results are better than our results which are

obtained in our recent published paper [2] which reported f-measure of 62.2% using 1,2,3 Gram with NB

algorithm.

Table 20. Accuracy comparison between different classification algorithms

Classification Algorithm
1,2,3 Gram

Precision Recall F-Measure

ComplementNaïveBayes
70.4% 70.2% 70.0%

NaïveBayesMutinomialupdatable
66.0% 65.1% 65.4%

NaiveBayes
64.3% 62.4% 62.8%

NaivebayesMultinomial
66.3% 59.5% 61.9%

Support Vector Machine SVM
59.3% 60.0% 59.0%

NaïveBayesUpdatable
55.3% 51.7% 52.5%

Simple Logistic
52.5% 54.4% 52.4%

Random Forest Tree
60.4% 56.3% 52.3%

Decision Tree J48
48.5% 49.6% 48.3%

KNN K=1
54.8% 45.5% 40.8%

KNN K=2
49.8% 36.1% 30.1%

In Fig. 21, we can see clearly that, the accuracy of 1,2 Gram is very similar to 1,2,3 Gram with very small

difference (i.e., F-measure improved from 68.4% to 70.0%).

Research part two: Automatic identification of COINs using ML and NLP

62

Fig. 21. Text algorithms performance via N-Grams

Table 21 shows the difference between these two variations in terms of F-measure.

Table 21. Accuracy comparison by using all words and top 1500 words

Algorithm

1,2,3 Gram

All words 1500 words

Precision Recall F-Measure Precision Recall F-Measure

ComplementNaïveBayes
70.4% 70.2% 70.0% 67.8% 67.9% 67.7%

NaïveBayesMutinomialupdatable
66.0% 65.1% 65.4% 65.3% 65.2% 65.2%

NaiveBayes
64.3% 62.4% 62.8% 63.3% 62.0% 61.1%

NaivebayesMultinomial
66.3% 59.5% 61.9% 65.1% 61.1% 62.7%

Support Vector Machine SVM
59.3% 60.0% 59.0% 58.4% 59.0% 57.8%

NaïveBayesUpdatable
55.3% 51.7% 52.5% 55.1% 51.3% 52.2%

Simple Logistic
52.5% 54.4% 52.4% 53.1% 54.5% 52.3%

Random Forest Tree
60.4% 56.3% 52.3% 61.0% 53.5% 47.3%

Decision Tree J48
48.5% 49.6% 48.3% 48.5% 49.6% 48.3%

KNN K=1
54.8% 45.5% 40.8% 55.0% 47.1% 41.5%

KNN K=2
49.8% 36.1% 30.1% 51.6% 44.6% 31.3%

It is clear, that the usage of all corpus words gives more accuracy than just using only top 1500 words. This

is also shown in Fig. 22. In addition, using 1,2,3 Gram with all corpus words is not only better than the using

the top 1500 words, but it is also better than using bi-gram or uni-gram.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
G
ra

m

1,
2
G
ra

m
1,
2,
3

G
ra
m

ComplementNaïveBayes

Decision Tree J48

KNN K=1

KNN K=2

NaiveBayes

NaivebayesMultinomial

NaïveBayesMutinomialupdatable

NaïveBayesUpdatable

Random Forest Tree

Simple Logistic

Support Vector Machine SVM

F
-M

e
a

s
u

re

Research part two: Automatic identification of COINs using ML and NLP

63

Fig. 22. Comparison between using corpus size corresponding to different N-Grams

For more precision, we conducted the experiment over the text classification algorithms and we observed

that ComplementNaïveBayes achieves the best performance over all N-Gram combinations. See Fig. 23.

Fig. 23. Performance of text classification algorithms via different N-Gram combinations

Results improvement using linguistic knowledge

In an attempt to enhance the accuracy results, we incorporated linguistic knowledge by using WordNet [75]

as stated to have a positive effect [76] [77]. In this regard, we decided to use hypernym10, which employs the

semantic relationship between similar words. For example, a set of words {‘Blue’,’Red’,’Green’} has a com-

mon hypernym called ‘Colour’; as explained in Fig. 24. Explanation of Hypernym

10 Hypernym is the name of a broader category of things [91]. For example, “colour” is hypernym of “red”.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
9

.8
%

6
6

.5
%

6
8

.4
%

6
7

.7
%

7
0

.0
%

1500 word All words

1 Gram

1,2 Gram

1,2,3 Gram

F
-M

e
a
s
u

re

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om
pl
em
en
tN
aï
ve
B
ay
es

D
ec

is
io
n

Tr
ee

 J
48

KN
N
 K

=1

KN
N
 K

=2

N
ai
ve

Bay
es

N
ai
ve

ba
ye

sM
ul
tin

om
ia
l

N
aï
ve
Ba
ye
sM
ut
in
om
ia
lu
pd
at
ab
le

N
aï
ve
Ba
ye
sU
pd
at
ab
le

R
an

do
m

 F
or

es
t T

re
e

Sim
pl
e

Lo
gi
st
ic

Sup
po

rt
Vec

to
r M

ac
hi
ne

 S
VM

5
9

.8
%

4
9

.7
%

4
2

.2
%

3
4

.7
%

5
9

.5
%

5
5

.5
%

5
9

.8
%

5
1

.4
%

5
2

.3
%

5
3

.7
%

5
6

.2
%

6
8

.4
%

4
8

.2
%

4
1

.0
%

3
1

.7
%

6
2

.0
%

6
1

.9
%

6
4

.7
%

5
2

.2
%

5
1

.1
%

5
3

.2
%

5
8

.5
%

7
0

.0
%

4
8

.3
%

4
1

.5
%

3
1

.3
%

6
2

.8
%

6
2

.7
%

6
5

.4
%

5
2

.5
%

5
2

.3
%

5
2

.4
% 5
9

.0
%

1 Gram

1,2 Gram

1,2,3 Gram

F
-M

e
a
s
u

re

Research part two: Automatic identification of COINs using ML and NLP

64

Fig. 24. Explanation of Hypernym 11

 Hence, we developed a python method to extract the hypernym of all words of type verb or noun from the

WordNet as shown in Fig. 25. Then we replaced the word in our corpus with the corresponding hypernym

word. In case there is no hypernym, then we return the same word.

Fig. 25. An excerpt of the developed Python code to extract Hypernym using the WordNet

Then we performed the experiment on the corpus using the same setting with the linguistic knowledge (i.e.

WordNet) and we achieved a less accuracy f-measure of 63.8% compared with 70.0% using ComplementNa-

ïveBayes algorithm as shown in Table 22. F-Measure of using the WordNet with respect to non-using of

WordNet

It is worth mentioning that, we used hypernym method, to the best of our knowledge this method is one of

the proposed methods besides other widely used methods like (synonyms, antonym) . In our case, the experi-

ments took 11 hours, from 10:00 PM to 09:00 AM to extract all hypernym of words in our corpus, which is

too much consuming time. Note that, the processor we ran the experiment on is Intel core i5 460 M with 2.5

GHZ.

11 Adapted from http://ohmyluna.blogspot.de/2011/01/hypernym-and-hyponym.html

1 def getHypernym(word,pos_type):

2 if(pos_type=='noun' and len(word)>=2

3 and len(wordnet.synsets(word, pos=NOUN))>0):

4 if(wordnet.synsets(word, pos=NOUN)[0].hypernym !=None) :

5 return (wordnet.synsets(word, pos=NOUN)[0].hypernym[0])

6

7 elif(pos_type=='verb' and len(word)>=2

8 and len(wordnet.synsets(word, pos=VERB))>0):

9 if(wordnet.synsets(word, pos=VERB)[0].hypernym !=None) :

10 return (wordnet.synsets(word, pos=VERB)[0].hypernym[0])

11

12 return word

13

14 else:

15 return word

Research part two: Automatic identification of COINs using ML and NLP

65

Table 22. F-Measure of using the WordNet with respect to non-using of WordNet

F-measure

NB SVM Complement NB

Without WordNet 62.80% 59.0% 70.0%

Using WordNet 57.90% 55.1% 63.8%

Classification accuracy achieved by the different ML Classifiers (Two-COIN Corpus case): As we men-

tioned earlier, the Two-COIN Corpus is derived from the Seven-COIN Corpus by abstracting into ‘COIN’ and

‘Not-COIN. Therefore, we ran a second round of the experiment where we repeated the same steps as ex-

plained in the first round with the Seven-COIN Corpus.

We tested the performance of our model using ten classification algorithms as shown Table 23 and Fig. 26.

Table 23. Accuracy comparison between different classification algorithms

Classification Algorithm

1,2,3 Gram

all words

Precision Recall F-Measure

ComplementNaïveBayes
81.9% 82.0% 81.9%

NaïveBayesMutinomialupdatable
81.9% 82.0% 81.8%

NaïveBayesUpdatable
70.5% 70.8% 70.5%

NaiveBayes
76.7% 74.5% 74.6%

NaivebayesMultinomial
81.8% 81.9% 81.8%

Support Vector Machine (SVM)
75.7% 75.7% 75.7%

Decision Tree J48
65.0% 65.2% 65.1%

Random Forest Tree
73.7% 73.9% 73.7%

KNN K=1
64.2% 52.3% 47.8%

KNN K=2
64.4% 48.7% 40.6%

Simple Logistic
68.2% 68.4% 67.2%

Logistic
67.1% 67.5% 66.5%

Research part two: Automatic identification of COINs using ML and NLP

66

Fig. 26. Accuracy comparison between different classification algorithms

Next, we performed the experiment by applying the classification algorithms on different combination of

N-Gram. As expected, the result was similar to the Seven-COIN round. The results revealed an improvement

in the accuracy compared to the Seven-COIN classification. That is, we have achieved the best accuracy using

1,2,3-Gram with recall of 82.0%, precision of 81.9% and f-measure of 81.9% by using ComplementNa-

ïveBayes algorithm. In the second place came the NaïveBayesMutinomialupdatable with accuracy recall of

82.0%, precision of 81.9 % and f-measure of 81.8%. These results are much better than what we reported in

our published paper [2], in which we got accuracy of f-measure 76.0% using 1,2,3 Gram with NB algorithm.

Besides, we compared the performance of the learning algorithms of our model with respect to different com-

bination of N-Gram. The results are shown in Fig. 27 and Fig. 28 respectively.

Fig. 27. Algorithms performance via N-Gram

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om
pl
em
en
tN
aï
ve
B
ay
es

D
ec

is
io
n

Tre
e

J4
8

K
N
N
 K

=1

K
N
N
 K

=2

N
ai
ve

B
ay

es

N
ai
ve

ba
ye

sM
ul
tin

om
ia
l

N
aï
ve
B
ay
es
M
ut
in
om
ia
lu
pd
at
ab
le

N
aï
ve
B
ay
es
Up
da
ta
bl
e

R
an

do
m

 F
or

es
t T

re
e

S
im

pl
e

Lo
gi

st
ic

S
up

po
rt

V
ec

to
r M

ac
hi
ne

 S
VM

Precision

Recall

F-MeasureF
-M

e
a
s
u

re

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
G

ra
m

1,
2

G
ra

m

1,
2,

3
G

ra
m

ComplementNaïveBayes

Decision Tree J48

KNN K=1

KNN K=2

NaiveBayes

NaivebayesMultinomial

NaïveBayesMutinomialupdatable

NaïveBayesUpdatable

Random Forest Tree

Simple Logistic

Support Vector Machine SVM

F
-M

e
a

s
u

re

classification algorithms

Research part two: Automatic identification of COINs using ML and NLP

67

Fig. 28. Classification performance via different N-Gram combinations in Two-COIN corpus

Finally, we observed that, if we limited the classification classes to COIN and Not-COIN, then the f-meas-

ure score increases to reach 81.8% instead of 70.0%. Our results are recorded in Table 24 and illustrated in

Fig. 29.

Table 24. Accuracy comparision between two different corpora

COINs Type

NaïveBayesMutinomialupdatable
(1)

ComplementNaïveBayes
(2)

F-Measure F-Measure

Seven-Classes 65.4% 70.0%

Two-Classes 81.8% 81.9%

Fig. 29. Accuracy comparision between two different corpora

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pl
em

en
tN

aï
ve

B
ay

es

D
ec

is
io
n

Tr
ee

 J
48

KN
N
 K

=1

KN
N
 K

=2

N
ai
ve

Bay
es

N
ai
ve

ba
ye

sM
ul
tin

om
ia
l

N
aï

ve
Bay

es
M
ut

in
om

ia
lu
pd

at
ab

le

N
aï

ve
Bay

es
U
pd

at
ab

le

R
an

do
m

 F
or

es
t T

re
e

Sim
pl
e

Lo
gi
st
ic

Sup
po

rt
Vec

to
r M

ac
hi
ne

 S
VM

7
4

.5
%

5
1

.5
%

4
1

.1
%

6
7

.8
%

7
0

.3
%

7
4

.2
%

7
5

.6
%

7
4

.6
%

7
3

.4
%

6
6

.1
%

7
1

.4
%8

1
.1

%

5
4

.6
%

5
7

.3
% 6

6
.3

%

7
0

.4
%

7
6

.9
%

8
1

.2
%

8
1

.0
%

7
4

.1
%

6
5

.2
%

7
2

.1
%8

1
.9

%

5
7

.1
%

5
8

.4
% 6

7
.2

%

7
1

.1
%

7
6

.9
%

8
1

.8
%

8
1

.8
%

7
3

.7
%

6
5

.2
% 7

5
.7

%

1 Gram

1,2 Gram

1,2,3 Gram

F
-M

e
a
s
u

re

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2

F-
M

e
as

u
re

Seven-Classes Two-Classes

Technical Support (A Tool Prototype)

68

7 TECHNICAL SUPPORT (A TOOL PROTOTYPE)

To bring our ideas into industry and make it practical, we designed a simple plugin tool so software archi-

tects or analysts can benefit from our ML classification ideas and achievements effectively. The tool aim sat

making it easy for architects to shape a general perception, which helps them in extracting the conceptual

interoperability constraint from API documents automatically. We built a prototype for the tool using web

service technologies. Through the tool, the architect selects any piece of text, and requests the COIN type that

the sentence could have just in one simple step. Such a service offered by the tool is very easy to use by an

architect in terms of usability, and accessibility. It also reduces the needed time and effort to analyze large

textual content searching for the COINs.

We implemented our tool prototype as a simple plugin for the Chrome web browser and we call it the CEP-

COIN (an abbreviation for Classifier Ensemble Plugin–COIN). We use the Java and JavaScript languages for

the implementation and we designed the tool with both front-end side and a back-end. Shortly, the front-end

side is the user interface (UI), while the back-end one is the core unit of our CEP-COIN.

Principle of work

A client uses CEP-COIN plugin from a web browser to send a piece of text from an API document through

an http request to the web server, which hosts and runs the web service. We call this service ‘COIN Classifying

Service’. Given a sentence, the web service predicts the COIN type by using the machine learning classifica-

tion model that we introduced in section 6.2. Then, this web service responds to the client request by sending

back the result (i.e., the COIN class that the sentence has). A simple overview of the described process flow is

shown in Fig. 30

Fig. 30. Process Flow of the CEP-COIN

Sentence

<Input>

COIN class

<Output>

1

CEP-COIN tool

Web server

Http Request the“COIN Class”

Http Response “COIN Class”

1

2

3

2

3

4
5

Technical Support (A Tool Prototype)

69

Using the CEP-COIN Tool

 In this section, we explain how software architect can install the tool prototype and how to use its func-

tionalities that are easy to follow.

CEP-COIN Installation. CEP-COIN prototype tool is very easy to install as Add-In for Chrome (we have

tested it Chrome version 49”). The software architect can import this tool from Chrome settings through the

extension menu. From this menu the architect would load the unpacked extension then select the folder of

the CEP-COIN as shown in Fig. 31

Fig. 31. Installing CEP-COIN Tool

Using CEP-COIN functionalities. The CEP-COIN service is offered in three different forms:

1. Using CEP-COIN Context Menu.

2. Using CEP-COIN Plugin GUI.

3. Using CEP-COIN Web Page.

1. Using CEP-COIN Context Menu: Once the CEP-COIN plugin is installed, you can select any text on the

webpage of an API document, then right click on the mouse and select COIN Classification. Immediately,

a popup window will appear with a COIN-Type as shown in Fig. 32. This context menu is very friendly if

the user want to classify any text by selection, but if he want to write his own text to classify, then he should

use another functionality of CEP-COIN plugin as it is explained next.

Fig. 32. Using CEP-COIN Tool from context menu

Steps:

1) Select any text.
2) Right click
3) Click ‘COIN Classification

1

2

Technical Support (A Tool Prototype)

70

2. Using CEP-COIN Plugin GUI: In this case, the software architect can enter any sentence without leaving

the webpage of the API document. The GUI of this form has a very simple interface. With this GUI, the

software architect can write any text and by pressing the button “Get COIN Class” then he can get the

corresponding COINs class in the result field as shown in Fig. 33.

Fig. 33. Using CEP-COIN from Plugin GUI

3. Using CEP-COIN Web Page: We developed a simple JSP page, which takes a textual sentence as an

input and returns the COIN type as an output. This service differs from the previous menu services in terms

of enabling the software architect to write any sentence without need to install the CEP-COIN. In addition,

he can use this web page from any web browser. See Fig. 34.

Fig. 34. Using CEP-COIN service from the JSP page

1

2

3

Technical Support (A Tool Prototype)

71

CEP-COIN Architecture

The Architecture of our CEP-COIN tool consists of two separated components as illustrated in Fig. 35

1- Front-End component: developed using JavaScript.

This component consist of one layer, which is a User Interface (UI) layer to provide a graphical user inter-

action (i.e., GUI). The software architect sends an http request from the browser via CEP-COIN tool. The tool

communicates with the server side directly using Ajax. Then, CEP-COIN passes the result back to the browser

using JavaScript & JQuery.

2- Back-End component: developed using Java.

There are three different layers. First layer is a business layer, which is responsible for finding the service

location. Then, it requests the service from a web services, and passing the sentence to the classification ser-

vice, which in turn sends a Simple Object Access Protocol (SOAP) [78], Description Language (WSDL) [79]

[80] file that contains:

1- The abstract service interface definition.

2- How to interact with service.

3- The location of the service.

 The second layer is the data access layer, which is responsible for creating an instance from the classifica-

tion model and for applying the text classification algorithm to find out the corresponding COIN class for

the sent sentence.

Technical Support (A Tool Prototype)

72

Fig. 35. Architecture of the CEP-COIN

CEP-COIN Implementation

We created two independent implementation parts: one for the client component (i.e., the representation

layer) using Ajax code to request our web service, and the second for the server component (which responds

to the client request and retrieves the COINs class using Java language. Next, we explain this implementation

part in more details.

Client Component (Front-end) implementation. In Fig. 36, we show an excerpt of the JavaScript12 and

JQuery13 code for requesting the COIN classification from server side. And this implementation is used in all

of the three forms of the client services (Context Menu, Plugin-GUI and Web form) as stated above.

12 https://www.w3.org/community/webed/wiki/What_can_you_do_with_JavaScript
13 https://jquery.com/

Browser

CEP-COIN Plugin

Front-End

JavaScript

HTTP Request

HTTP Response

 Back-End

Business Logic Layer

Data Resource

Layer
 Classification

Model

IO Read

SOAP Request

WSDL file

SOAP Response

Web Services

“Classification service”

Classification Method

Machine Learning Algorithms

Data Access

Layer
JAVA API

Weka API

UI Layer

Technical Support (A Tool Prototype)

73

The implementation defines a simple http request using post command. Hence, the command requires the

web service URL and retrieves the COIN type. Then, it writes back the result immediately on the webpage od

the browser document.

Server Side (Back-end) implementation. Here we depict the three main processes that are running on the

server side of our tool. Note that we used GlassFish Server 4.1.114 for deploying and running the CEP-COIN

web service.

The core functionalities of our server side are performed in the business logic layer. There are three essential

processes to retrieve the COIN type. These three processes are (load ML model, classify, and response to client

request) these processes are shown in Fig. 37

These processes are implemented completely in pure Java. We used NetBeans 8.1 as an IDE and Java EE

15 with JDK 1.8 16 for developing the server side code. For loading ML libraries and algorithms, we used Weka

API [81]. The reason to use Java API and Weka API. Therefore, all Weka resources and packages are totally

Java callable, reliable, stable and compatible.

14 https://glassfish.java.net/
15 http://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html
16 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

1 function getTheCOINType [2]()

2 {

3 var sentence=getParameterByName('textCOIN');

4 var posting =

5 $.post("localhost:8080/WebApplication2/faces/action.jsp",

6 {textCOIN: sentence});

7 posting.done(function (data) {

8 document.write(data.trim()); }

9 });

10}

Fig. 36. JQuery for requesting the Classification Service

Classify

Response
COIN type

<Output>

COINS Type
Load ML

Model
ML Model

requested

sentence

<Input>

Fig. 37. Server Side Processes Flow

Technical Support (A Tool Prototype)

74

We implemented a method called loadModel to load the ML model from the server drive into the server

memory using Java API. In Fig. 38 we show the complete implementation of this method.

The Object ObjectInputStream holds the model into the memory. Then, we defined a Weka API object

classifier of type FilteredClassifier. This object is responsible for the classification process, which holds the

ML algorithm that s used in the training phase towards finding out the appropriate COIN type.

1 public void loadModel(String ModelfileName) {

2 try {

3 FileInputStream FS=new FileInputStream(ModelfileName);

4 ObjectInputStream inModel = new ObjectInputStream(FS);

5 Object ClassifierObject = inModel.readObject();

6 classifier = (FilteredClassifier) ClassifierObject;

7 inModel.close();

8 System.out.println("Loaded model: " + ModelfileName);

9 }

10 catch (Exception ex)

11 {

12 System.out.println("Problem:" + ModelfileName);

13 }

14 }

Fig. 38. loadModel method implementation

Technical Support (A Tool Prototype)

75

Tool Performance

We evaluated the tool performance in terms of time spent to classify textual sentences. This evaluating was

performed by classifying 10 sentences with average of 20 words per a sentence. The average time required to

classify each sentence is 1.0 second. Remember that the tool effectiveness in classifying the sentences in iden-

tical to our described achievements in section 6.2 (i.e., recall =70.2%, precision =70.4% and f-measure

=70.0%). We have tested our tool prototype on the platform configuration shown in Table 25

Table 25. Platform Cofiguration

 CPU

RAM Bus Speed
Brand Speed

Server configuration Intel Xeon E5 2.2 GHZ EDO 3.5 GB 200 MHZ

Client configuration Intel core i5 460 M 2.5 GHZ DDR3 4GB 133 MHZ

Future work and development

Since our tool is currently implemented as a prototype, it is designed only to operationalize our contributed

ML classification model to show its applicability. That is, we just pointed out the potential practical advantages

that our automatic classification ideas would bring to software architects and analysts in retrieve the required

COINs from verbose of text in API documentation.

For research time restrictions, we limited our plugin implementation to work only on one example of web

browsers (we chose Chrome because of its popularity). In future, we are planning to develop CEP-COIN tool

to work on other web browsers like Internet Explorer (IE), Firefox. On the other hand, we aim at extending

the capabilities of our CEP-COIN tool to classify multiple sentences or even a complete document at once

instead of classifying just a single sentence at once. In this case, CEP-COIN returns a list of COINs instead of

single COINs as in our current version.

Additionally, We also intend to benefit from users feedback on the automatic classification results of the

new sentences they send to the tool (e.g., to offer an optional report for their agreement on the provided

classification or their disagreement and suggested classification). Keeping record of such data could be used

to enrich our corpus content, and consequently we could use them in improving our classification model

accuracy through continuous learnning.

Moreover, we will support CEP-COIN tool with extra features like reusability. The idea of that is by

tracking the users’ recorded data in our DB system to provide them with reports of the classified documents.

These reports can be formalized in different formats like (excel, xml, text, doc, etc.) to be incorporated in

different analysis systems in order to save time and efforts by reusing it.

Furthermore, we are planning to support the architects and software engineers with different types of

statistics and recommendations about the conceptual interoperability constraints that their analyzed document

Technical Support (A Tool Prototype)

76

have. For example, the CEP-COIN can return statatistics about sentences and their COINs type distribution

for a complete document.

Research Challenges

77

8 RESEARCH CHALLENGES

Despite many of the challenges that we encountered, we learned something new and gained more skills and

experiences. Due to the clear goal and research plan, we continued our work and confront these difficulties in

various ways until we overcame many of them.

Along our researching which we were exploring the capabilities of using the NLP and ML technologies to

automate the extraction of the COINs from API documents we faced many challenges that we describe bellow

along with our solutions as well.

8.1 Lack of labeled data

For using ML classification techniques, we needed a ground truth, which must include as much as possible

of already classified or labeled textual sentences from API documentations according to the COIN model. As

such, requirement did not exist; we had to build it by ourselves at the beginning of our research. This manual

task was very tedious and time consuming as we analyzed and classified each sentence from the API docu-

ments we selected (see chapter 4). In this task, we encountered the following three sub-challenges:

1. Selecting representative API documentation cases.

The first obstacle we faced in our research was selecting the API documentation that meet our research

requirements (i.e., API documents that contain conceptual information and not only technical ones, and that

are diversified and widely used). This required us to define appropriate selection criteria that directs our search

and nomination for included documents in our research (see the research methodology chapter for details).

2. Extracting relevant content from the selected API documentations

 After we finished reading the selected API documentations, we faced an obstacle of content representation,

in which we found the conceptual information was not pure, but rather it contained technical noise (e.g., sen-

tences contain natural language text along with code, symbols, tags, etc.). This noise was unwanted as it was

irrelevant to our interest in the conceptual information only. Not only such a mix confuses the machine, but

also worse, it gives the human reader hard times to interpret the text. For our work, it was necessary to clean

and organize the textual content to facilitate the pattern recognition and keyword extraction for both ap-

proaches we described at section (6.1 and 6.2). In order to perform that, we first implemented a simple PHP

code using Simple HTML DOM Parser library to filter out the API documentation from noise. (i.e., headers,

images, etc.). However, we found that, these tools were not sufficient and they were poor to meet the required

purpose. For example, the available tools are not able to filter out the code-content, which is so frequent in

many parts of the API documentation. These tools also do not support sentence tokenization into separated

lines. Therefore, we decided to extend our manual efforts along with these tools to clean the content. Although

this manual cleaning resulted in absolutely better content, it consumed too much time and mental effort to

check sentence by sentence and word by word.

Research Challenges

78

3. Sentences with poor description.

Classifying the sentences of the textual content in the API documents required linguistic skill in to under-

stand the sentence meaning and classify according to the seven COIN classes. We needed to identify the mes-

sage delivered by each sentence, which sometimes was not trivial due to multiple messages in one sentence.

That is, some sentences had more than one COIN class within it. In addition, the document had some grammar

mistakes and ambiguous words that made it harder to interpret sentences. Actually, it was a challenging task

especially at the beginning of the research.

However, we got over this obstacle by training and practicing on the included cases and by the reviewing and

discussing session that we had as described in chapter 5 section 4.

4. Aggregating the collected data from across the cases.

Another challenge that we faced was to aggregate and organize the collected data from the distinctive cases

each with its own style. It was not trivial to put such incoherent data with different formats and structures. This

task required additional time and many attempts to figure out a suitable procedure to gather them into one data

container. The result of our effort produced one consistent database accommodating clean and organized sen-

tences for later usage within automatic ML classifiers.

8.2 Identifying cross-case COINs identification rules.

One of the most challenging phases of our research was to come up with a set of effective extraction rules

and features to be fed up to the machine learning algorithms in our first classification approach (i.e., rule-based

classification). It was a tedious manual investigation that consumed a lot of our research time that took ap-

proximately 35% of our effort. In particular, it was not a trivial task to identify the representative features for

each COIN class from the sentences, which contained instances of the class manually. That is, for each phrase

independently, we looked after the patterns no matter how diverse they are, then, we selected only the appro-

priate ones and neglected the insignificant ones in terms of number of occurrences. We tried different NLP

techniques (i.e., word tokenizing, stemming, Stopwords elimination, N-Gram) as aids for us to overcome these

obstacles and get better results.

8.3 Understanding the semantics and contexts.

This is considered to be the most troublesome among the issues that faces the researchers in the artificial

intelligence area. Thus, we spent part of our research time reading related papers and scientific article regarding

this issue, and we tried different approaches to maintain this problem. Finally, we settled on using N-Gram

techniques and WordNet [75] to cover meaning and context issue. For example if we consider two consecutive

words together by using N-Gram with N=2, then this helps us to preserve the word in a context, for example:

two words like “perform jobs”, “user name” allows the classification model to recognize the context of these

two words together instead of using a single word as a feature. This also was shown in our experiment, where

the prediction accuracy is better when we use N-Gram with N between 1 and 3.

Research Challenges

79

8.4 Limitation of resources.

Working with text processing technologies has a very high consumption of resources (i.e., memory and

CPU speed). In our experiments, there are two main phases require high-performance and hardware resources.

First phase (Rule-based classification) and the second phase (BOWs-based classification, in which we ex-

tracted the features by applying NLP-Pipeline. As mentioned previously, our corpus size is 2283 COINs,

hence, the process of extracting features requires high hardware resources. In particular, this required a big

size of memory to accommodate the representation of the mathematical model resulting from this process. In

fact, it was a very difficult situation, almost ending with memory overflow after performing many experiments.

Then we restart again Weka many times to perform the experiment from scratch. To overcome this problem,

we recorded the results of the experiment after each classification process manually to assure that at least we

have the measures of the last experiments. And we faced the same problem in the second phase (BOWs).

Finally, we have solved this problem partially by configuring RunWeka.ini and then set parameter (maxheap

= 10024M instead of 1024M), then it works longer time than before but then again it shut down after some

period of time.

In fact, the consumption of resources is a common problem in machine learning and is expected to occur

frequently. Although, it was not easy to run the experiments with such resource limitations, we did not have

other alternatives.

Overall Discussion And Conclusion

80

9 OVERALL DISCUSSION AND CONCLUSION

The main goal in this thesis is to support software analyst and architect in identifying the conceptual in-

teroperability constraints, COINs, automatically in the text of API documents. In our research, we followed a

systematic empirical-based methodology that has two main advantages: (1) tracing and verifying documented

results among two research phases, and (2) repeating the defined activities in our protocol by other researchers

in order to address researcher bias threat to validity. To achieve our research goals, we explored the potentials

of using ML and NLP, built a classification model, and conducted explorative experiments. Here we offer a

summarized answer for our two main research questions:

RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the

NL text of API documentation?

Answer: Through our observation during the classification process, we found some patterns. For instance, the

sentences of type Not-COIN (which represent about 34.3% of the total COINs in the corpus) contain signifi-

cantly many technical keywords, and they include a text explaining technical and practical details about ser-

vices/systems. For COINs of type dynamic (which comprise about 28.3%), have some specific patterns. For

example, we found that, they include a description of the activity or the flow of operations. Additionally, they

contain many conditional sentences such as (IF/Then) sentences that are used to clarify the expected results of

the specific input. For COINs of type semantic (which constitute approximately 27.4%), have some distinctive

patterns. For example, the sentences describe the purpose or goal of the service or activity. On the other hand,

there are more than 48% of the semantic COINs that contain special terms. Thus, we classified them into three

lists: 1) Output/Input verbs. 2) Supporting verbs. 3) Admission verbs. As shown in Appendix (Table 34,

Table 35 and Table 36).

We have also achieved additional related findings in this matter that we formulate in the following questions

and answers:

Question A: Where could we find the COINs in the API documents, (i.e., in which sections or paragraphs)?

Answer: To the best of our knowledge and according to our reviews of the API documents, we conclude that,

the COINs fundamentally exist in specific paragraphs such as abstract - Introduction - Overview - Conclu-

sion – Summary. In light of the fact that these paragraphs are rich within concepts and abstract level of

knowledge that are needed for analysts and architects to cover within their conceptual interoperability analy-

sis. However, COINs rarely exist in the paragraphs or sections that describe technical information such as

method description and code examples.

Question B: To which extent are API documents similar in terms of structure and format?

Answer: We have noticed that there are differences in the composition of the API documentation. For in-

stance, some of these documents are subject to the special format and structure. Thus, we found that some

API documents such as GoogleMaps is technical oriented and serves developers rather than software archi-

Overall Discussion And Conclusion

81

tects. Therefore, mining COINs in these type of documents would be tough. While other documents like Ap-

pleWatch, SoundCloud and Eclipse serve developers and architects as they have an organized structure and

format of the information with proper balance between concepts and technicalities.

Regarding to the second defined research question for our research; we summarize its answer as below.

RQ2: How effective and efficient would it be to use Natural Language Processing (NLP) along with Machine

Learning (ML) technologies to automate the extraction of COINs from the text in API documentations?

Answer: Initially, when using ComplementNaïveBayes algorithm for classifying Seven-COIN and Two-

COIN. We got encouraging results with F-measure of 70.0%, which is a quite good result. On the other hand,

when classifying only Two-COIN, the results get better with F-measure of 81.9%, which is about 11.9% higher

than the accuracy of classifying Seven-COIN. It is self-evident because classifying multi-classes requires more

holistic data, while classifying data of less classes will show better results if we have the same volume of data.

Similar as the first research question we have achieved further findings related to RQ2 that we formulate in

the following questions and answer.

Question C: What is the best text classification algorithm for identifying the COINs in API documents?

Answer: In fact, for each problem domain, there is a different text classification algorithm. In particular, after

our experiments that we have performed, we came up with that, ComplementNaiveBayes achieved the best

performance in terms of accuracy in classifying the COINs.

Question D: How can the classification model be used in practice?

Answer: In fact, a simple and practical mechanism to use such model is through utilizing a plugin tool that

works through a web browser. More specifically, we have developed the classification model using Weka API

and Java API together. However, the user interface is designed as a chrome plugin, which can be used easily

and instantly, and again the accuracy of our tool depends on the accuracy of the model that we have designed.

Question E: What can improve efficiency?

Answer: We expect that classifying more sentences from other API documents and adding them to the ground

truth (i.e. COIN Corpus) will increase the effectiveness of our proposed ML classification model.

Future Work

82

10 FUTURE WORK

There is a window for more enhancements that can be performed in the future to our research and below

we mention some of the most important ones.

1. Improving the performance of our ML classification model. Obviously, this requires us to train the classifier

on more training data set, which in turn requires us extra effort and time to classify more sentences of API

documents into the COINs’ classes. As the volume of data plays a fundamental role in increasing the effi-

ciency of the automated classifier [28].

2. The use of deep learning techniques: which is a branch of machine learning based on a set

of algorithms that attempt to model high-level abstractions in data by utilizing multiple processing layers,

with complex structures [82] [83]. Which has proven their effectiveness and superiority in the field of clas-

sification of texts [84]. In Addition, using such techniques may help in comprehending the textual content,

which is one of the most serious challenges in the ML area. However, it is relatively difficult to apply such

techniques because of their need for high hardware resources and equipment with high specifications (e.g.,

high processor speed and memory size).

3. Preparing our tool for industrial usage by increasing its efficiency and supporting its work in different plat-

forms (i.e., to be compatible with different web browsers and IDE environments).

4. Extending our tool with more features, so that it is able to find all COINs in an API document by segmenting

it into sentences first, and then by classifying each sentence separately into the COIN classes.

5. Improving the current ML classification model to do self-learning through the feedback collected from users

such as engineers and architects. This is expected to improve the accuracy of the classifier due to the added

knowledge by the experts.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm

Appendix

83

11 APPENDIX

11.1 Tables

A. The extraction data sheet used for collecting data.

Table 26. The extraction data sheet

Sentence id Sentence COINS Type API Document

Appendix

84

B. Part of Speech (POS) tagging [85]

Table 27. Part-of-speech tags used in the Penn Treebank17 [86]

Tag Description

1 CC Coordinating conjunction

2 CD Cardinal number

3 DT Determiner

4 EX Existential there

5 FW Foreign word

6 IN Preposition or subordinating conjunction

7 JJ Adjective

8 JJR Adjective, comparative

9 JJS Adjective, superlative

10 LS List item marker

11 MD Modal

12 NN Noun, singular or mass

13 NNS Noun, plural

14 NNP Proper noun, singular

15 NNPS Proper noun, plural

16 PDT Predeterminer

17 POS Possessive ending

18 PRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

25 TO to

26 UH Interjection

27 VB Verb, base form

28 VBD Verb, past tense

29 VBG Verb, gerund or present participle

30 VBN Verb, past participle

31 VBP Verb, non-3rd person singular present

32 VBZ Verb, 3rd person singular present

33 WDT Wh-determiner

34 WP Wh-pronoun

35 WP$ Possessive wh-pronoun

36 WRB Wh-adverb

17 Penn Treebank is a large corpus, approximately 7 million words of part-of-speech tagged text, 3 million words of skel-

etally parsed text, over 2 million words of text parsed for predicate argument structure, and 1.6 million words of tran-

scribed spoken text annotated for speech disfluencies. URL: http://citeseerx.ist.psu.edu/viewdoc/sum-

mary?doi=10.1.1.9.8216 [86].

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8216
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8216

Appendix

85

C. Top frequently terms

Table 28. Top 30 frequently terms used in "Dynamic" class

Co-occurrence keyword

1 111 job

2 94 user

3 80 app

4 51 interface

5 46 client

6 46 create

7 46 method

8 45 notification

9 44 use

10 42 request

11 41 access

12 40 api

13 38 object

14 38 plug

15 38 value

16 36 watch-chain

17 35 specify

18 34 lock

19 33 time-share

20 32 schedule

21 30 include

22 30 set-up

23 29 run

24 28 property

25 27 application

26 27 data

27 27 platform

28 26 code

29 26 default

30 26 note

Appendix

86

Table 29. Top 30 frequently terms used in "Semantic" class

Co-occurrence keyword

1 84 user

2 78 plug

3 67 app

4 59 provide

5 50 platform

6 48 interface

7 46 job

8 45 extension

9 43 content

10 43 notification

11 40 application

12 39 use

13 38 work-in

14 36 person

15 36 return

16 33 display

17 32 request

18 30 api

19 30 object

20 29 allow

21 29 define

22 29 support

23 29 type

24 28 result

25 28 system

26 28 watch-chain

27 26 create

28 25 file

29 24 client

30 24 method

Appendix

87

Table 30. Top 30 frequently terms used in "Structure" class

Co-occurrence keyword

1 20 interface

2 18 content

3 17 app

4 17 contain

5 16 collection

6 16 type

7 14 person

8 13 include

9 13 object

10 12 plug

11 11 file

12 11 platform

13 10 implement

14 10 property

15 9 bundle

16 9 user

17 8 class

18 7 application

19 7 controller

20 7 distribution

21 7 extension

22 7 watch-chain

23 6 data

24 6 eclipse

25 6 note

26 6 represent

27 6 separate

28 6 work-in

29 5 button

30 5 create

Appendix

88

Table 31. Top 30 frequently terms used in "Syntax" class

Co-occurrence keyword

1 15 calculate

2 15 route

3 13 indicate

4 10 specify

5 9 user

6 8 prefer

7 7 conversation

8 6 avoid

9 6 direction

10 6 transit

11 5 person

12 5 travel

13 4 character

14 4 element

15 4 mode

16 4 set-up

17 4 time-share

18 4 xml

19 3 activity

20 3 app

21 3 application

22 3 call

23 3 collection

24 3 eclipse

25 3 information

26 3 key

27 3 language

28 3 manifest

29 3 platform

30 3 plug

Appendix

89

Table 32. Top 30 frequently terms used in "Quality" class

Co-occurrence keyword

1 6 user

2 4 direction

3 4 provide

4 3 access

5 3 api

6 3 note

7 3 result

8 3 token

9 2 application

10 2 availability

11 2 bicycle

12 2 cancel

13 2 cause

14 2 content

15 2 display

16 2 fail

17 2 include

18 2 integrate

19 2 javascript

20 2 language

21 2 lead-in

22 2 malicious

23 2 match

24 2 oauth

25 2 optimize

26 2 parse

27 2 performance

28 2 platform

29 2 plug

30 2 presence

Appendix

90

Table 33. Action Verbes

Co-occurrence Verb

1 46 create

2 44 use

3 42 request

4 41 access

5 38 plug

6 34 lock

7 30 include

8 30 set-up

9 29 run

10 25 start

11 22 call-up

12 20 redirect

13 19 register

14 19 track

15 18 run-up

16 17 add

17 17 update

18 15 acquire

19 15 avoid

20 14 call

21 13 perform

22 12 return

23 12 store

24 11 implement

25 11 install

26 10 build-up

27 10 launch

28 10 receive

29 10 search

30 9 connect

31 9 determine

32 9 flow

33 9 list

34 9 load

35 8 execute

36 8 initiate

37 8 select

38 8 send

49 8 share

Appendix

91

Table 34. Output/Input verbs

Verb

1 access

2 display

3 download

4 fetch

5 notify

6 read

7 recall

8 receive

9 recover

10 response

11 retrieve

12 return

13 select

14 send

15 share

16 submit

17 upload

Table 35. Supporting verbs

Verb

1 support

2 provide

3 Suggest

4 give

5 propose

Table 36. Admission verbs

Verb

1 allow

2 enable

3 admit

4 let

5 give

6 grant

7 permit

8 facilitate

9 authorize

10 prevent

11 stop

12 avoid

Appendix

92

Table 37. Defined Stopwords

Stopword

1 !

2 #

3 #for

4 $

5 $

6 *

7 /

8 @

9 +

10 a

11 about

12 above

13 all

14 also

15 an

16 and

17 another

18 any

19 any

20 anyone

21 are

22 as

23 at

24 b

25 be

26 but

27 by

28 c

29 etc

30 everyone

31 here

32 in

33 into

34 is

35 it

36 its

37 like

38 no

39 not

40 now

41 of

42 often

43 on

44 only

Appendix

93

45 or

46 other

47 others

48 our

49 over

50 re

51 s

52 s

53 such

54 t

55 that

56 the

57 their

58 them

59 then

60 there

61 therefore

62 these

63 they

64 this

65 those

66 to

67 up

68 us

69 was

70 we

71 were

72 which

73 who

74 will

75 with

76 within

77 x

78 y

79 yours

80 z

Bibliography

94

12 Bibliography

[1] H. Abukwaik , M. Naab and D. Rombach, "A Proactive Support for Conceptual Interoperability

Analysis in Software Systems," in Software Architecture (WICSA), 2015 12th Working IEEE/IFIP

Conference on, Montreal, 2015.

[2] H. Abukwaik, M. Abujayyab, S. R. Humayoun and D. Rombach, "Extracting Conceptual

Interoperability Constraints from API Documentation using Machine Learning," in The 38th

International Conference on Software Engineering (ICSE 2016) Companion, TX,USA, 2016.

[3] IEEE standard computer dictionary. A compilation of IEEE standard computer glossaries - IEEE

Std 610, Library of Congress Catalog Number 90-086306, 1990.

[4] ISO/IEC 2382:2015(en)- Information technology -Vocabulary - Terms and definitions.

[5] " C4ISR Interoperability Workig Group: Levels of information systems interoperability (lI-SI).

Technical Report, Department of Defense (1998)".

[6] B. J. Powers, "A multi-agent architecture for NATO network enabled capabilities: enabling

semantic interoperability in dynamic environments (NC3A RD-2376)," in Service-Oriented

Computing: Agents, Semantics, and Engineering, Springer, 2008, pp. 93-103.

[7] "Extending the levels of conceptual interoperability model," in Proceedings IEEE Summer

Computer Simulation Conference. IEEE CS Press (2005) , 2005.

[8] H. Abukwaik, D. Taibi and D. Rombach, "Interoperability-Related Architectural Problems and

Solutions in Information Systems: A Scoping Study," in Software Architecture: 8th European

Conference, ECSA 2014, Vienna, 2014.

[9] P. Jackson and I. Moulinier , Natural Language Processing for Online Applications: Text retrieval,

extraction and categorization - Second revised edition (Natural Language Processing), 2nd ed., John

Benjamins Publishing Company, 2007, pp. 2-3.

[10] L. Shane and H. Marcus, "A Collection of Definitions of Intelligence," in Proceedings of the 2007

Conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms:

Proceedings of the AGI Workshop 2006, 2007.

[11] R. Grishman, Computational linguistics: an introduction, Cambridge University Press, 1986, pp.

4-5.

[12] D. Marneffe and C. Manning, Stanford typed dependencies manual, 2008.

[13] Manning and D. K. Christopher, "Natural Language Parsing," in Advances in Neural Information

Processing Systems 15: Proceedings of the 2002 Conference, 2003.

[14] D. Marneffe, M. Catherine, MacCartney, Bill , Manning and Christopher , "Generating typed

dependency parses from phrase structure parses," in Proceedings of LREC, vol. 6, 2006, pp. 449-454.

[15] K. Madani, A. D. Correia, A. Rosa and J. Filipe, Studies in Computational Intelligence, vol. 577,

Springer; 2015 edition (October 16, 2014), pp. 3-5.

[16] J. S. Gero and S. Hanna, Design Computing and Cognition '14, Springer; 2015 edition (April 17,

2015), 2015, p. 477.

[17] C. Bird, T. Menzies and T. Zimmermann, The Art and Science of Analyzing Software Data,

Morgan Kaufmann; 1 edition (September 15, 2015), pp. 499-500.

[18] "Stanford Dependencies," The Stanford Natural Language Processing Group, 03 April 2016.

[Online]. Available: http://nlp.stanford.edu/software/stanford-dependencies.shtml. [Accessed 03

April 2016].

[19] F. L. Gaol and Q. V. Nguyen, "Incorporating Non-local Information into Information Extraction

Systems by Gibbs Sampling," in Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, Stroudsburg, PA: Association for Computational Linguistics, 2005, pp.

363-370.

[20] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to

Algorithms, 1st ed., Cambridge University Press; 1 edition (May 19, 2014).

Bibliography

95

[21] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to

Algorithms, 1st ed., Cambridge University Press, 2014.

[22] M. Maharasi and N. A. Sophia, "A Survey of Text Categorization and its Various," (IJCSIT)

International Journal of Computer Science and Information Technologies, vol. 6, no. 3, 2015.

[23] S. Fabrizio, "Text Categorization," 2005.

[24] K. P. Murphy, "Naive bayes classifiers," University of British Columbia, 2006.

[25] Leung and K. Ming, "Naive bayesian classifier," Polytechnic University Department of Computer

Science/Finance and Risk Engineering, 2007.

[26] H. N. Vladimir N. Vapnik AT&T Bell Labs, The Nature of Statistical Learning Theory, New York,

NY: Springer-Verlag New York, Inc., 1995.

[27] Tong, Simon and Koller and Daphne, "Support Vector Machine Active Learning with Applications

to Text Classification," J. Mach. Learn. Res., vol. 2, pp. 45--66, 2002.

[28] M. Banko and E. Brill, "Scaling to very very large corpora for natural language disambiguation,"

in Proceedings of the 39th Annual Meeting on Association for Computational Linguistics,

Toulouse,France, 2001.

[29] C. Silva and B. Ribeiro, Inductive Inference for Large Scale Text Classification: Kernel

Approaches and Techniques, Springer, 2009, pp. 26-27.

[30] A. Gelbukh, F. C. Espinoza and S. N. Galicia-Haro, "Feature Selection Based on Sampling and

C4.5 Algorithm to Improve the Quality of Text Classification Using Naïve Bayes," in Human-

Inspired Computing and its Applications: 13th Mexican International Conference on Artificial

Intelligence, MICAI2014, Tuxtla Gutiérrez, Mexico, November 16-22, 2014. Proceedings, Part 1,

Mexico.

[31] R. S. Kumaran, K. Narayanan and J. N. Gowdy, "Language modeling using independent

component analysis for automatic speech recognition," in Signal Processing Conference, 2005 13th

European, IEEE, 2005, pp. 1--4.

[32] W. Chu and T. Y. Lin, Foundations and Advances in Data Mining (Studies in Fuzziness and Soft

Computing), Springer; 2005 edition (October 26, 2005), pp. 225-226.

[33] S. Robertson, "Understanding inverse document frequency: On theoretical arguments for IDF,"

Journal of Documentation, vol. 60, p. 2004, 2004.

[34] M. Radovanović and M. Ivanović, "Text mining: Approaches and applications," Novi Sad J. Math,

vol. 38, no. 3, pp. 227-234, 2008.

[35] M. J. Michael P. Oakes, Ed., Quantitative Methods in Corpus-Based Translation Studies: A

Practical Guide to Descriptive Translation Research (Studies in Corpus Linguistics), John Benjamins

Publishing Company (March 20, 2012), 2012.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, "Distributed representations of

words and phrases and their compositionality," in Advances in neural information processing systems,

2013, pp. 3111-3119.

[37] "Feature selection," Stanford University, [Online]. Available: http://nlp.stanford.edu/IR-

book/html/htmledition/feature-selection-1.html. [Accessed 03 April 2016].

[38] G. Forman, "An Extensive Empirical Study of Feature Selection Metrics for Text Classification,"

J. Mach. Learn. Res, vol. 3, pp. 1289-1305, 01 March 2003.

[39] S. Zhou, K. Li and Y. Liu, "Text categorization based on topic model," International Journal of

Computational Intelligence Systems, vol. 2, no. 4, pp. 398-409, 2009.

[40] A. Navot, R. Gilad-Bachrach, Y. Navot and N. Tishby, "Is Feature Selection Still Necessary?," in

Proceedings of the 2005 International Conference on Subspace, Latent Structure and Feature

Selection, Bohinj, Slovenia, Springer-Verlag, 2006, pp. 127-138.

[41] A. Arora, A Selective-phrase-based Preprocessor for Improved Spam Filtering, 2008, pp. 19-20.

[42] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie and H. Mei, "Inferring Dependency Constraints on

Parameters for Web Services," in Proceedings of the 22Nd International Conference on World Wide

Web, Rio de Janeiro, Brazil, International World Wide Web Conferences Steering Committee, 2013,

pp. 1421-1432.

Bibliography

96

[43] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney and A. Paradkar, "Inferring Method Specifications

from Natural Language API Descriptions," in Proceedings of the 34th International Conference on

Software Engineering, Zurich, Switzerland, IEEE Press, 2012, pp. 815-825.

[44] F. Melvin, First-order logic and automated theorem proving, 2nd ed., Springer-Verlag New York,

Inc., 1996.

[45] H. Zhong, L. Zhang, T. Xie and H. Mei, "Inferring Resource Specifications from Natural Language

API Documentation," in Proceedings of the 2009 IEEE/ACM International Conference on Automated

Software Engineering, IEEE Computer Society, 2009, pp. 307-318.

[46] U. Dekel and J. D. Herbsleb, "Improving API Documentation Usability with Knowledge Pushing,"

in Proceedings of the 31st International Conference on Software Engineering, IEEE Computer

Society, 2009, pp. 320-330.

[47] S. Forrest , S. Janice and S. I. K. Dag, Guide to Advanced Empirical Software Engineering,

Springer; 2008 edition (October 26, 2007), 2007.

[48] R. Victor, Basili, G. Caldiera and H. D. Rombach, "The Goal Question Metric Approach," in

Encyclopedia of software engineering -2 volume set, Wiley, 1994.

[49] R. K. Yin, Case Study Research: Design and Methods (Applied Social Research Methods), p. 46.

[50] R. Bakeman and J. M. Gottman, Observing Interaction: An Introduction to Sequential Analysis,

2nd ed., Cambridge University Press; 2 edition (March 13, 1997), 1997.

[51] B. Claudia, R. Mike and P. J. Gordon, "Automatic Grammar Rule Extraction and Ranking for

Definitions".

[52] M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java 6th

Edition, Wiley, 2014.

[53] S. Dumais, J. Platt, D. Heckerman and M. Sahami, Inductive Learning Algorithms and

Representations for Text Categorization, New York, NY: ACM, 1998, pp. 148--155.

[54] Rish and Irina, "An empirical study of the naive Bayes classifier," in IJCAI 2001 workshop on

empirical methods in artificial intelligence, vol. 3, 2001, pp. 41--46.

[55] F. Colas and P. Brazdil, "Comparison of SVM and Some Older Classification Algorithms in Text

Classification Tasks," in Artificial Intelligence in Theory and Practice, vol. 217 , M. Bramer, Ed.,

Springer Science \& Business Media, 2006.

[56] J. Rennie, L. Shih, J. Teevan and D. Karger, "Tackling the Poor Assumptions of Naive Bayes Text

Classifiers," in In Proceedings of the Twentieth International Conference on Machine Learning,

2003, pp. 616--623.

[57] A. McCallum and K. Nigam, A comparison of event models for Naive Bayes text classification,

1998.

[58] B. Pablo, G. Jose and P. Jose , "Improving the Performance of Naive Bayes Multinomial in e-Mail

Foldering by Introducing Distribution-based Balance of Datasets,," vol. 38, pp. 2072--2080, March

2011.

[59] A. Roshani and D. PR, "Instance-based vs Batch-based Incremental Learning Approach for

Students Classification," International Journal of Computer Applications, vol. 106, no. 3, 2014.

[60] B. Neeraj, S. Girja, B. Ritu and M. Manish, "Decision tree analysis on j48 algorithm for data

mining," Proceedings of International Journal of Advanced Research in Computer Science and

Software Engineering, vol. 3, no. 6, 2013.

[61] A. Jehad, K. Rehanullah, A. Nasir and M. Imran, "Random forests and decision trees,"

International Journal of Computer Science Issues (IJCSI), vol. 9, no. 5, 2012.

[62] D. A. Freedman, Statistical Models: Theory and Practice., Cambridge University Press, 2009, p.

128.

[63] M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning (Adaptive

Computation and Machine Learning series), The MIT Press (August 17, 2012), 2012, pp. 129-131.

[64] N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, vol. 3,

The American Statistician 46, p. 175–185.

[65] C. Silva and B. Ribeiro, Inductive Inference for Large Scale Text Classification (Kernel

Approaches and Techniques), vol. 225, Berlin: Springer-Verlag, pp. 21-24.

Bibliography

97

[66] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2004, pp. 330-331.

[67] S. Fabrizio, "Machine learning in automated text categorization," ACM computing surveys

(CSUR), vol. 34, no. 1, pp. 1-47, March 2002.

[68] P. Buitelaar and P. Cimiano, Ontology Learning and Population: Bridging the Gap Between Text

and Knowledge, IOS Press , 2008 , p. 138.

[69] Z. Cai, Z. Li, Z. Kang and Y. Liu, "Complex Numerical Evaluation Measures," in Computational

Intelligence and Intelligent Systems (4th International Symposium on Intelligence Computation and

Applications), Springer, p. 469.

[70] X. Guo, Y. Yin, C. Dong, G. Yang and G. Zhou, "On the Class Imbalance Problem," in Fourth

International Conference on Natural Computation, Jinan, 2008.

[71] M. Melucci and R. Baeza-Yates, Advanced Topics in Information Retrieval (The Information

Retrieval Series), Springer; 2011 edition (June 27, 2011), 2011, p. 64.

[72] G. A. Jivani, A Comparative Study of Stemming Algorithms.

[73] M. F. Porter, "An algorithm for suffix stripping. Program," Program, vol. 14, no. 3, pp. 130 - 137,

1980.

[74] B. J. Lovins, "Development of a stemming algorithm," Mechanical Translation and

Computational Linguistics, vol. 11, pp. 22-31, 1968.

[75] "About WordNet," [Online]. Available: https://wordnet.princeton.edu/. [Accessed 11 02 2016].

[76] S. Scott and S. Matwin, "Text Classification Using WordNet Hypernyms," in Usage of WordNet

in Natural Language Processing Systems, 1998, pp. 45--51.

[77] J. Kwak and H.-S. Yong , "Ontology Matching Based on hypernym, hyponym, holonym, and

meronym Sets in WordNe," International Journal of Web & Semantic Technology.

[78] "Latest SOAP versions," W3C, [Online]. Available: https://www.w3.org/TR/soap/. [Accessed 06

April 2016].

[79] "Web Services Description Language (WSDL) 1.1," W3C, [Online]. Available:

https://www.w3.org/TR/wsdl. [Accessed 06 April 2016].

[80] R. Reis, "Information Technology: Selected Tutorials," in IFIP 18th World Computer Congress

Tutorials, Toulouse, France, 2004.

[81] "Weka 3 - Data Mining with Open Source Machine Learning Software in Java," cs.waikato.ac.nz,

[Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/documentation.html. [Accessed 06 April

2016].

[82] L. Deng and D. Yu, Deep Learning Methods and Applications, Now Publishers Inc, 2014.

[83] J. Porter, Deep Learning: Fundamentals, Methods and Applications (Education in a Competitive

and Globalizing World), Nova Science Pub Inc.

[84] M. Iyyer, V. Manjunatha, J. Boyd-Graber and H. Daum´e, "Deep Unordered Composition Rivals

Syntactic Methods for Text Classification," in Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing, Beijing, China}, 2015.

[85] "Alphabetical list of part-of-speech tags used in the Penn Treebank Projec," [Online]. Available:

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html. [Accessed 07 03

2016].

[86] A. Taylor, M. Marcus and B. Santorini, The Penn Treebank: An Overview, 2003.

[87] L. Quoc V and T. Mikolov, "Distributed representations of sentences and documents," arXiv

preprint arXiv:1405.4053, 2014.

[88] A. Singhal, "Modern Information Retrieval: A Brief Overview," IEEE Data Eng. Bull., vol. 24,

pp. 35-43, 2001.

[89] S. J., Gershman and B. Joshua, "Phrase similarity in humans and machines," 2015.

[90] A. Günter, R. Kruse and B. Neumann, Eds., KI 2003: Advances in Artificial Intelligence: 26th

Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003,

Proceedings, Springer; 2003 edition (November 5, 2003), 2003, p. 454.

Bibliography

98

[91] M. Bryan, "Formal Definition of Semantic Concepts," [Online]. Available: http://www.is-

thought.co.uk/concept.htm. [Accessed 23 2 2016].

[92] H. Amiri and T.-S. Chua, "Sentiment Classification Using the Meaning of Words," AAAI

Workshops; Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, 15 07 2012.

[93] C. Borg, M. Rosner and G. Pace, "Evolutionary algorithms for definition extraction," in WDE '09

Proceedings of the 1st Workshop on Definition Extraction, Stroudsburg, PA, USA, 2009.

	1 INTRODUCTION
	1.1 Overview
	1.2 Research methodology and contributions
	1.3 Outline

	2 BACKGROUND
	2.1 Conceptual Interoperability
	2.2 Natural Language Processing (NLP)
	2.3 Machine Learning (ML)

	3 RELATED WORK
	4 RESEARCH METHODOLOGY
	4.1 Research methods
	4.2 Goals and Research Questions

	5 RESEARCH PART ONE: MULTIPLE-CASE STUDY
	5.1 Study design (Holistic multiple-case study)
	5.2 Study Execution
	5.3 Discussion
	5.4 Threats to validity

	6 RESEARCH PART TWO: AUTOMATIC IDENTIFICATION
	6.1 First Approach: Rule-based Machine Learning Classification
	Rule construction using NLP
	Exploratory Experiment
	Evaluation Metrics
	Results and Evaluation

	6.2 Second Approach: Bag-of-Words-based Machine Learning Classification
	Data preparation
	Perquisites input for our ML classification model.
	Exploratory Experiment
	Evaluation Metrics
	Results and Evaluation.

	7 TECHNICAL SUPPORT (A TOOL PROTOTYPE)
	Principle of work
	Using the CEP-COIN Tool
	CEP-COIN Architecture
	CEP-COIN Implementation
	Tool Performance
	Future work and development

	8 RESEARCH CHALLENGES
	8.1 Lack of labeled data
	8.2 Identifying cross-case COINs identification rules.
	8.3 Understanding the semantics and contexts.
	8.4 Limitation of resources.

	9 OVERALL DISCUSSION AND CONCLUSION
	10 FUTURE WORK
	11 APPENDIX
	11.1 Tables

	12 Bibliography

