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Abstract 

Successfully integrating software systems requires fulfilling their conceptual interoperability constraints 

that restrict their state or behavior. Typically, the only source for these information that is available for third-

party clients is the API documentation. However, manually reading and analyzing the natural language (NL) 

text within such API documents, which is unstructured textual content, is a tedious and time consuming task 

and it requires lexical and linguistic analysis skills. Moreover, it might undergo many mistakes and misunder-

standings leading to unexpected mismatches and cost consequences to fix them.  This encouraged us to provide 

a means to support software analysts and the architect to help them in increasing their efficiency and effec-

tiveness for identifying the conceptual interoperability constraints automatically rather than manually from the 

text in API documentations. 

To achieve our goals in this research, we followed an empirical-based methodology in incorporating ma-

chine learning (ML) technologies together with natural language processing (NLP) ones. The main contribu-

tions of this thesis are wrapped within our methodology. First, we started with a manual development for a 

corpus, which is a collection of relevant sentences we chose from real API documentations then we manually 

classified them into different classes. This classification is based on the COnceptual Interoperability coN-

straints (COIN) model, which has seven classes (i.e. NOT-COIN, Dynamic, Semantic, Structure, Syntax, Con-

text and Quality). Then, we built rules for these classes. Afterwards, we decided to explore the potentials of 

using the ML classifiers, thus we designed the classification model that defines the frequently used patterns 

and terms for representing conceptual interoperability constraints in the NL text of API documents. By training 

the classification model on our developed corpus. We were able to run many text classification algorithms and 

we have achieved promising results F-measure of 70.0% for classifying seven-classes and F-measure of 

81.9% for classifying two-classes. Finally, we implemented a plugin tool by utilizing the classifier that we 

trained, so this tool allows architects to classify any texts into one of these seven classes. 
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1 INTRODUCTION 

1.1 Overview 

Conceptual interoperability constraints (COINs) are restrictions on interoperable software units and their 

related data elements at different conceptual levels (i.e., syntax, semantics, structure, dynamics, context, and 

quality) [1]. For successful interoperations, such constraints need to be identified and fulfilled. Otherwise, they 

may cause conceptual mismatches that hinder the interoperation or even produce meaningless results, and 

consequently lead to expensive resolution at later project stages. Therefore, third-party clients need to effec-

tively analyze the shared documentation of external APIs. However, manual filtering of natural language (NL) 

text within API documents is a tedious, exhaustive and time consuming task. To cope with these challenges, 

we elaborate on Abukwaik’s  [1] ideas of extracting a complementary set of conceptual constraints from text 

in API documentation using machine learning (ML) and natural language processing (NLP) technologies. 

Our goal in this thesis is to support software architects and analysts in performing the conceptual interopera-

bility analysis effectively, while keeping the associated cost of identifying COINs low. In our work, we follow 

a systematic empirical-based methodology that has two advantages, i.e., tracing and verifying documented 

results between the research phases, and repeating the defined activities in our protocol by other researchers to 

address researcher bias threat to validity. 

    In this thesis, we expand our previous research [2]  by extracting more patterns and rules from the API 

documents and investigating more text classification algorithms, therefore conducting more experiments and 

then comparing results accuracy and studying their efficiency and effectiveness as well in the usage of the 

automated COINs classification (which is tedious to do manually). We mainly rely on our manual classifica-

tion for the COINs as a ground truth, which we created from API documentation to be fed up to our text 

classification model.  

   Our previous research [2] shows an acceptable accuracy level in the classification of the COINs automati-

cally and this will benefit designers and architects in finding out COINs from any API documentation, where 

it is tedious and time consuming to be performed manually. 

1.2 Research methodology and contributions 

In this, we followed a methodology that included the following main research tasks: 

1- Reviewing the State-of-the-Art (SoA): First, a literature review to identify the existing methods and 

technologies to extract conceptual interoperability constraints from NL documentation.  

2- Exploratory multiple-case study: In order to find out the state of current API documentation with re-

gards to the way the conceptual interoperability constraints are documented, we analyzed multiple API 

documentations (cases). Each case study goes through three main phases: 

─ Data preparation for collecting evidence where text will be pre-processed into single sentences.  
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─ Data collection starts with labeling each sentence with one of the COINs classes [1]. Then, sentences 

that agree on the label are grouped together. 

─ Thematic analysis for the produced groups of sentences will be conducted to find out the frequent 

terms, patterns and sentence structures that will be encoded into initial themes.  

3- Exploring the potentials of ML and NLP in extracting the COINs from API documentation. 

 

Our research contributions are listed as follows: 

1- Transforming raw unstructured data (i.e., text in API documents) into structured data with unified 

format to be used in next research steps. 

2- Building the COINs corpus (i.e. ground truth): Manually classifying the conceptual interoperability 

constraints (COINs) of the collected data with the help of “Constraints of COIN Model”. [1] 

3- Defining representation patterns of COINs: Manually mining and analyzing of the textual content of 

the API documents in order to identify the frequently used terms and sentences structures from the 

collected API documents. 

4- Building the text classification model (classifier): Utilizing the obtained corpus, we designed two 

different classifiers. These classifiers are used for automatically classifying the COINs. 

5- Exploratory experiment: Evaluating the efficiency of the created classifiers in terms of accuracy by 

conducting experiments that utilize different text classification algorithms.  

6- Developing a plugin prototype, which is available to be used as web service1. 

7- Parts of our presented work in this thesis has been accepted in The 38th International Conference on 

Software Engineering (ICSE 2016) Companion, and will be presented during the conference that will 

held on May 14-22, 2016, Austin, TX, USA [2] 

  

                                                           
1 Web service: is a  Program Integration across Application and Organization boundaries https://www.w3.org/DesignIs-

sues/WebServices.html 
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1.3 Outline 

The rest chapters of our thesis are organized as the following: 

– Chapter 2 presents a background on Conceptual Interoperability Constraints and its different models. It also 

offers some definitions for the natural language processing, machine learning terms, and the texts classification 

methods and algorithms, which are used in our proposed solution 

– Chapter 3 overviews the related works that deal with our stated problem of identifying software interoperabil-

ity constraints and highlights their advantages. Afterward, this chapter explains briefly the differences between 

our approach and the presented related works. 

– Chapter 4 presents the research methodology that we followed in solving the problem, and describes the goals 

of our research methods. 

– Chapter 5 poses the first part of the research, which is a multiple-case study. We describe the study design, 

results, and discussion along with the threats to validity. 

– Chapter 6 presents the second research part of our study, which answers the question about the efficiency of 

the natural language processing and machine learning in solving the problem of text classification. In this sec-

tion, we offer two different approaches to solve the problem and answering the research questions, with pre-

senting the results, evaluation and clarifying the efficiency of each of the two approaches. 

– Chapter 7 introduces a technical solution by developing a tool prototype, in order to provide the software 

architects and analysts with means to facilitate the COINs classification from any API documentation. This 

section also explains in details the design, implementation, and performance evaluation of this tool prototype 

– Chapter 8 presents the most important challenges and obstacles that we faced during this research work, and 

how we overcame them. 

– Chapter 9 presents the results that have been accomplished through our thesis in meeting the research and 

answering its related questions. 

– Chapter 10 introduces the future vision for extending this research from different aspects. It offers some ideas, 

which might improve the performance of the automated classification model, and some other suggestions on 

how to take advantage of this research in other practical area especially in industry. 
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2 BACKGROUND 

In this chapter, we start with introducing the definition of conceptual interoperability and the COnceptual 

Interoperability coNstraints (COINs). Then, we present a basic introduction to natural language processing, 

machine learning, and text classification that we have utilized through our research.  

2.1 Conceptual Interoperability 

In computer science, interoperability is “the ability of two or more systems or components to exchange 

information and to use the information that has been exchanged.” [3] [4].  

Interoperability between software systems is one of the most important modern concepts that receive consid-

erable attention recently, because of many considerations such as communication, compatibility and interac-

tion between different systems, which become very important. Besides, the interoperability is facing many 

challenges and obstacles, such as technical heterogeneity (e.g., different communication protocols, data input 

and output type and parameters orders) [1]. 

    Due to the importance of the interoperability, multiple classification-models have been proposed for deter-

mining, and organizing the interoperability levels in software systems. For example, (1) the Levels of ISs 

Interoperability (LISI) [5], (2) NC3TA Reference Model for Interoperability (NMI) [6] and (3) the Levels of 

Conceptual Interoperability Model (LCIM) [7].  The main importance of these models is their ability to identify 

both the levels of compatibility between systems as well as the effort needed for configuring these systems in 

order to work interchangeably and integrally [8]. 

    In our thesis, we based our research on the Conceptual Interoperability Constraints (COIN) Model [1], be-

cause it focuses on the conceptual constraints that are of our interest and because it can be applied to different 

software systems (e.g., information systems, embedded systems, mobile systems, etc.). 

According to Abukwaik [1] , The COINs are defined as the conceptual characteristics that govern the software 

system’s interoperability with other systems. That is, wrong understanding, misassumption and misuse of these 

conceptual constraints might defect the desired interoperability causing systems’ inconsistency in getting mu-

tually meaningful results and leading to serious consequences accordingly (e.g., cost increase or project fail-

ure). Obviously, explicit and clear declaration about the system COINs helps analysts in detecting the concep-

tual mismatches and thus allows for a more effective and efficient resolving for these mismatches [1].  

   Table 1 represents the current set of COINs and their classes with examples. We introduce these classes 

briefly here, but for more details about it, you can see [1]. 

COIN Classes: Abukwaik et. al. [1], defined the six-classes of the COINs as follow: 

1. Syntax COINs “specify the concept-packaging methods (i.e., the conceptual modeling language) and the 

lexical references used in the system. Examining the syntactic match paves the way towards investigating 

the semantic one. “. 

2. Semantic COINs “state semantic constraints (e.g., the measurement unit of a calculateDistance service is 

km not mile), and semantic references (e.g., reference ontologies) that encode the meaning of exchanged 



Background 

 

16 

 

data and service goals. As no reference ontology has been widely adopted yet, we consider this a theoretical 

constraint which is left for future advances in the ontology research. ” . 

3. Structure COINs “depict system’s elements, their relations, and their arrangements that influence the 

interoperation results, e.g., interoperating with a software system without being aware of its data distribu-

tion may introduce a security threat if network links between remote sites are not encrypted. In this case, 

the distribution of the system is a structural COIN. “ 

4. Dynamic COINs “report information about the behavior of the interoperability elements during interac-

tion. If such details are missed, they can introduce conceptual interaction flaws. For example, interoperat-

ing with a software system of regularly changing data may lead to synchronization issues if this property is 

not declared and addressed properly. “. 

5. Context COINs “pertain to external aspects forming the interoperation settings, i.e., user and usage prop-

erties. For example, software systems that are designed to interoperate with software systems on desktop 

devices may cause display and memory issues on mobile devices.” 

6. Quality COINs “capture required and provided quality characteristics related to exchanged data and ser-

vices. For example, inaccurate results may occur when interoperating. “ 

Table 1.  Conceptual Interoperability Constraints [1]  
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2.2 Natural Language Processing (NLP) 

Natural Language Processing (NLP) [9] is a field in computer science that combines the usage of both 

Artificial Intelligence (AI) [10] and Computational Linguistics (CL) [11]. There is a progress in researches 

that aims at improving the accuracy of finding the grammatical structures of the sentences [12] [13] [14]. 

Below we will introduce some of the main NLP technologies, which are used in the construction of any lin-

guistic analysis system to identify the grammatical structures. 

Parts Of Speech (POS) tagging is known also as a grammar classification of the words in the sentence, this 

technique is used to identify the part of speech in terms of (noun, verb, pronoun, adjective, etc.) [15] [16]  

Example: a sentence “the child watches the match”, here “the” is a determiner, “child” is a noun, “watches” 

is a verb, “match” is a noun.  For more information, see Fig. 1   

Chunking is parsing a sentence into phrases and clauses, in which they are groups of interconnected set of 

words with logical relation, such as verb phrase and noun phrase [17]. See Fig. 1 

 

Fig. 1. An example of POS tagging, chunking and clause identification. [17]. 

Typed Dependencies [12] [14] is a technique to provide a simple description of the grammatical relations, 

which are oriented in particular toward non-linguistics experts in order to perform tasks related to NLP. It 

provides a hierarchical structure of the words in order to illustrate the words dependencies in a sentence with 

a simple description of each dependency. For example a sentence “Bills on ports and immigration were sub-

mitted by Senator Brownback, Republican of Kansas“ is analyzed into a grammatical relations as shown in 

Fig. 2 [18]. 

 

Fig. 2. Standard Stanford dependencies [18] 
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Named Entity Recognition [19]  is also known as entity identification, which is a technique to extract infor-

mation about words in a sentence by classifying the words based on predefined classes. These classes often 

have a higher level of abstraction, and depends fundamentally on the semantic meaning of the words. For 

example “USA, Germany, UK” are transformed into a word “Country”. This technique is helpful in facilitating 

the semantic meaning by finding the main entity that these words belong to. 

2.3 Machine Learning (ML) 

It is a branch of computer science and a part of Artificial Intelligence (AI). In particular, it refers to training 

the computer on specific patterns that depend on the problem domain by utilizing some of the machine learning 

algorithms [20], in order to enable the automatic prediction and detection of these patterns by the machine 

[21]. In this section, we introduce some of the ML text classification techniques and statistical language mod-

eling that we utilized in our research. 

Text Classification (TC) 

Text classification (TC) is the process of classifying sentences in documents of text into two or more pre-

defined classes (classes) [22]. In principle, TC is a subjective task, for example, when two experts (human or 

artificial) decide whether to classify a sentence S in document D under class C, they might also disagree, and 

in fact, this happens with relatively high frequency [23]. 

There are many traditional text classifier algorithms such as Naive Bayes [24] [25], Support, Vector Ma-

chine [26] [27], etc. The performance of any of these classifiers depends mainly on the quality and the quantity 

of the training dataset, which is manually labeled and carefully selected to be representative as much as possi-

ble. The more proper training of labeled data the better accuracy the classifier achieves [28].  

Text Classification Workflow 

In Text classification, there are two main processes [29]. The first one is the training process, in which the 

classifier is learned on some classified data sample. While, the second is the prediction process, in which the 

classifier assigns the suitable class of a given data.    It is important to mention that, before performing the 

training and prediction processes, two interior procedures need to be performed on the input document, which 

contains data. These two procedures are the “features extraction” and the “feature selection” that we explain 

next in details. In Fig. 3, we summarize the text classification workflow. 
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Fig. 3.   Text Classification Workflow 

Feature Extraction  

It is the process of deriving features from the existing raw data [30] . The goal of the feature extraction is 

to find the most representative characteristics from the original data. These features should be carefully ex-

tracted, because they have to represent the important aspects of the sentence structure, semantic, context and 

all other significant information as well.  

There are many different feature extraction techniques can be applied for unstructured text. Some of the com-

mon ones are called statistical language modeling techniques [31]. In these techniques, the word sequences 

are assigned a statistical probability  [31]. Here are some of these techniques: 

1. Bag of Words (BOWs) [32]  is a simple technique for text classification, in this approach, each word 

in a sentence is considered as a feature and a document is represented as a matrix of weighted values 

using some kind of a weighting method such as TF-IDF (Term frequency –Inverse Document Fre-

quency)  [33]. However, BOWs model has some limitation like that it does not consider both the 

grammar and the meaning of the sentence. This is because it ignores the words ordering and losses 

the semantics of the words, but still it gives a score about the words importance in the whole document 

[34].   For example: consider a sentence like ‘The software has configurations’ In BOWs, each sen-

tence is represented as a matrix of features of single separated words like "The",”soft-

ware”,"has",”configurations” 

2. N-Grams is a combination representation of all of adjacent words in a sentence [35]. N can be any 

number greater than zero (N > 0). Thus, 1-Gram refers to unigram that is the simplest form of N-

Gram model, and in this case, a sentence is represented by a single word. Similarly, 2-Grams stands 

for bigrams, in which a sentence is represented by two sequence words together. In the same way, 

3-Grams are trigrams that represents a sentence by three sequence words together. An example of 
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each of these aforementioned N-Grams is explained on a sentence “The screen is red” as shown in 

Table 2. 

Table 2. N-Grams example 

unigram ‘The’ , ’screen’ , ’is’ ,  ’red’ 

bigrams ’The screen’ , ‘ screen is‘ ,  ‘is red’ 

trigram ’The screen is’ , ’screen is red’ 

3. Skip-gram is a generalized form of N-Grams with a goal to discover word representations that help 

in predicting words in the same context in the sentence, which incorporates data sparsity problems 

[36]. The more data become available for the Skip-gram model, the more the information the model 

can extract.  

For example the sentences: 

- "I have to return" 

- "I have never had to return" 

- "I finally have to return" 

- "I do not have to return"  

All these sentences are grouped into the skip-gram "I have to return", which means they have similar 

shape. 

Choosing the best techniques for feature extraction depends primarily on the problem domain, for example: 

sentiment classification2  might give high performance if the features are extracted by using the Bag of Word 

technique [32], while news classification using N-Gram technique could achieve better results [35]. Shortly, 

the high-quality features means better results! 

Feature Selection 

Feature selection is the process of choosing only the most important features from the extracted features 

[37]. This is performed by eliminating the redundancy and neglecting the less useful features, while keeping 

the semantic unchanged [38]. In general, there could be millions of features, especially when working on a 

huge amount of textual data, for example working on topics modeling [39], in which some texts are given and 

then identifying what the topic of these texts is, or in another words: what the texts talking about. In Fig. 4, we 

picture the feature selection concept. 

 

Fig. 4. Feature Selection workflow 
 

                                                           
2 Sentiment Classification (SC) is about assigning a positive, negative or neutral label to a piece of text based on its overall 

opinion. [92] 

Feature 
 Selector 

Extracted features 
 

Selected features 
 

https://en.wikipedia.org/wiki/N-gram#Skip-gram
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Applying feature selection has advantages like [40]: 

1. Increasing the model prediction accuracy (by avoiding overfitting). Overfitting is a problem of getting 

inaccurate prediction when testing the classifier. In this problem, the error rate of prediction increases in 

the testing data set but decreases in the training data set.  It happens when the size of the training data set is 

too small compared with the complexity of classification model [41]. 

2. Reducing time cost to construct a model and speeding up the model prediction process. 

3. Providing a deeper understanding of the process infrastructure that generated the data.
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3 RELATED WORK 

In this thesis, we present an approach to automatically extract conceptual interoperability constraints, the 

COINs, from NL text in API documents via NLP and ML technologies. Many recent researches proposed 

identifying specific types of constraints from API documentation in different ways. Therefore, in this chapter, 

we describe briefly the similar works to our research. 

Wu et al. [42] identified parameters’ dependency constraints from multiple library resources, mainly web 

services and SDK documentation that are expressed in natural language. They proposed an approach called 

INDICATOR (INference of Dependency ConstrAinTs On parameteRs) that collects information from API 

documentation about operations’ definitions and parameters’ descriptions. Their approach has two stages: the 

first stage is documentation analysis to extract only the constraints candidates, and the second stage is con-

straints validations, in which the final results are only the validated constraints.  

Pandita et al. [43] proposed an approach to automatically infer the formal method specifications from nat-

ural text of API documents. They introduced a new technique that assists client-code developers to correctly 

use methods specifications in terms of method prerequisites, and what is expected after method is executed 

(i.e., so-called pre-conditions and post-conditions). This approach helps to ensure a legal usage of code con-

tract to avoid inconsistency, misleading and prevent exceptions and bugs during code development cycle. The 

idea of the approach is based on reading the whole method descriptions from API documents including: sum-

mary, argument description, return description, exception description, and remark description. Then, they use 

a shallow parser to parse the specification in First-Order-Logic FOL [44] expressions, which are extracted 

using natural language processing NLP Parser. NLP is used as a core-intermediator to analyze and process the 

code-content and textual content to construct code-contract as a final result.  

Zhong et al. [45] proposed an approach called Doc2Spec to recognize and infer resource specifications. In 

particular, they developed a tool for Doc2Spec that is mainly based on linguistic analysis of the API Docu-

ments using natural language processing NLP techniques. The significant importance of their tool is to dis-

cover and extraction resources’ specifications as a first step and match them with the code-implementation as 

a second step. The basic functionality of Doc2Spec is to detect both known and unknown bugs in code auto-

matically, which are the consequences of disregard API specifications or misused resources by developers. 

For example: developer might not close resources properly after the end of their usage. Such tools can play an 

essential role to avoid errors and refine code quality in implementation phase. 

Dekel and Herbsleb [46] introduced an approach for improving API documentation usability by extracting 

and highlighting the important part of documentation, which includes the sensitive information, instructions, 

and guidelines to push them into a programming IDE editor.  They developed eMoose tool [46], which searches 

and automatically tracks the content of several major APIs documentation to find the important hidden infor-

mation to assist developers. These information are called directives that hold method requirements and optimal 

method invocations. eMoose offers to developers a list of method recommendations in terms of knowledge 

items, constraints, method invocation dependency, and side effects based on the code context. This allows 



Related Work 

 

23 

 

developers to work in a safe mode by protecting them against the risks of improper implementation. In addi-

tion, the tool increases developer’s awareness about the future problems by preventing errors, runtime fails, or 

encountered code violations, which are potentially hard to predict during code implementation phase. Hence, 

the tool positively affects software performance and consistency. 

 

Some of the aforementioned approaches like Wu et al. [42] and Pandita et al. [43] used NLP with rule-based 

identification, while Zhong et al [45] used ML to identify the name of the restricted entities, but not the re-

striction themselves. In our research, we elaborate on Abukwaik et al [1] idea of extracting different type of 

conceptual constraints utilizing both NLP and ML technologies together. In addition, we extracted different 

types of constraints as mentioned before (Not-COIN, Dynamic, Semantic, Syntax, Structure, Context and 

Quality) constraints. In our research, we followed the empirical methodology [47].  
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4 RESEARCH METHODOLOGY 

In this chapter, we describe our research methodology, starting with the research methods in section “3.1 

Research methods” Then; we define our research goals and questions in section “3.2 Goals and Research 

Questions”. 

4.1 Research methods 

In this thesis, we followed an empirical-based methodology in exploring the potential of automating the 

extraction of COINs from API documents to support architects and analysts in performing their conceptual 

interoperability task with the lowest cost possible.  

The empirical research provides us with many advantages like allowing us to trace and verify the obtained 

results between the research tasks and their results. Moreover, it enables other researchers to repeat measure 

and extrapolate the results independently. Therefore, we performed our research in two parts as follows: 

 

Research Part One (multiple-case study). In the first part of our empirical research, we systematically ex-

plored the nature of COINs in many API documentations to explore their current state in terms of their fre-

quently used terms and patterns. Accordingly, we manually built our COINs corpus that holds each investi-

gated sentence in the API documents along with its COIN class.  

 

Research Part Two (ML for automatic COINs Extraction). In the next part of our research, we used the 

results of the previous research task in directing our investigation about the capabilities of NLP (in representing 

the observed patterns and rules obtained from analyzing the COINs) and the power of ML (in learning these 

modeled patterns and rules towards full automation of identifying the COINs in text). Finally, with exploratory 

experiments we evaluated the accuracy of our produced ML model. This helped us in deciding how useful our 

automatic extraction idea for software architects and analysts in performing effective and efficient conceptual 

interoperability analysis. 

 

4.2 Goals and Research Questions 

In fact, this work is extending the proposed idea of Abukwaik et al. [5] of automating the extraction of 

COINs from their API documentation. Hence, we formulated our main goal in terms of GQM-goal template 

[48], which in turn supports the more comprehensive purposeful goals as the following:  

─ To: support the conceptual interoperability analysis task  

─ For the purpose of:  improvement   

─ With respect to: effectiveness and efficiency  

─ From the viewpoint of: software architects and analysts  

─ In the context of: analyzing text in API documentation within integration projects 

We translate this goal into the following research questions that we try to answer within our research: 

 RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the 

NL text of API documentation? 
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Rational: This question aims at building an accurate Ground Truth (i.e. COINs corpus) that represents the 

first building block of our automatic extraction idea. To answer the research question we need to collect 

adequate data manually (i.e., textual sentences from API documents), then we analyzed it, and identified a 

set of patterns and extraction rules for the found COINs. The metric we used for this research question are 

frequent terms and sentence structures.  

 

 RQ2: How effective and efficient would it be to use Natural Language Processing (NLP) along with Ma-

chine Learning (ML) technologies to automate the extraction of COINs from the text in API documenta-

tions? 

Rational: This question aims at tackling the challenges of extracting the COINs from NL text by building a 

machine model for the COINs to utilize it within already existing ML classification algorithms. The metric 

we used for this research question are Accuracy, Recall, Precision, and F-Measure.   
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5 RESEARCH PART ONE: MULTIPLE-CASE 

STUDY  

In this chapter, we present the first part of our research starting with its design in section 5.1, in which we 

defined a research method. Then we present the execution of our designed multiple-case study in section 5.2. 

Then we discuss the results. 

5.1 Study design (Holistic multiple-case study)  

Study goal. The first part of our research has a goal of answering the first research question that we mentioned 

in chapter 3, which is “RQ1: What are the frequently used patterns in specifying the conceptual interoperability 

constraints COINs in API documentation?” 

In order to do so, we need to investigate the current state of COINs (in terms of representation, context and 

recurring patterns) by exploring real-world API documentation. This investigation facilitated discovering the 

infrastructure of the building units, which help in finding out the representative terms, structure and patterns, 

which is very important to be used in ML later on in the next chapter. 

Research method. Accordingly, we decided to perform a multi-case study with literal replication of cases 

from different domains. Such study allows us to recognize and perceive variety cases, with important evidence 

to get with generalizable and more powerful results as drawn independently across replicated cases. Fig. 5 

illustrates the Holistic multiple-case study and other cases types [49].  

Fig. 5. Holistic multiple-case study [49] 

Analysis unit. Our case study has a holistic design, which means that we have a single unit of analysis, which 

is “the sentences that include COIN instances”. 

Study protocol. Our multiple-case study protocol includes three main activities, which are case selection, case 

execution, and cross-case analysis that we detail in the execution section 4.2 “Study Execution”. 
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Design of the data extraction sheet. We designed a “data extraction sheet” that we implemented as an MS 

Excel sheet (see appendix 7.3). The extraction sheet consists of the following fields: 

Sentence ID: it is an auto number; and each sentence has a unique number. 

Sentence: the textual value of the sentence that we call the “unit of analysis”, which may include a COIN 

instance. 

COIN type: one of the classes of the conceptual interoperability constraints COIN: {Semantic, Dynamic, 

Syntax, Context, Quality} and {Not-COIN}.  

Source API document: to record the original API document name.   

 

5.2 Study Execution 

    In this section, we present the execution of our designed multiple-case study. 

Case selection 

We have chosen six API documentations, which are: SoundCloud, GoogleMaps, Skype Instagram, Ap-

pleWatch and Eclipse-Plugin Developer Guide. We considered different characteristics and criteria for the 

choosing like: 

─ Published statistics3 on API mashups score, which represents the API popularity in terms of API usage 

by developers to build web services or even applications. As shown in Table 3. 

 Table 3. Mashups score of API documentation 

API Documentation Mashups 

SoundCloud 34 

Google Maps 2580 

Skype 30 

Instagram 64 

─ API type: we select different API types in terms of web service and platform. Our selection was as the 

following (Four API documents from web services and two API documents from platform. Since, web-

services covers different services than the platform does.  

─ API domain: we also consider the diversity of the selected APIs document to cover different domains 

such as social activates by selecting Instagram API documentation, and from communication services, 

we selected Skype, and from developing environment; we selected two different APIs, which are Ap-

pleWatch and Eclipse-Plugin Developer Guide).  

Finally, we summarized our selection cases in Table 4. Which represent all API domains and its API docu-

mentations, and for each API documentation we added it API link in order to extract these document from its 

source, as we will explain in next section Case Execution. 

                                                           
3 Programmable web: http://www.programmableweb.com/apis/directory 

http://www.programmableweb.com/api/soundcloud
http://www.programmableweb.com/api/google-maps
http://www.programmableweb.com/api/instagram
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Table 4. API documentation's URL 

API Domain Documentation Links to process 

Web-Service 

SoundCloud 
https://developers.soundcloud.com/docs/api/guide 

https://developers.soundcloud.com/docs/api/reference  

GoogleMaps https://developers.google.com/maps/web-services/ 

Skype https://msdn.microsoft.com/en-us/library/office/mt124991.aspx 

Instagram https://instagram.com/developer 

Platform API 

AppleWatch 

https://developer.apple.com/library/prerelease/ios/documentation/Gen-

eral/Conceptual/WatchKitProgrammingGuide/#//ap-

ple_ref/doc/uid/TP40014969-CH8-SW1 

Eclipse -Plug-in Developer Guide 

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.plat-

form.doc.isv%2Frefer-

ence%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html 

 

Case Execution.  

 

 In this stage, we performed for each case the following three steps: data preparation, data collection, and data 

analysis as shown in Fig. 6 

 

 

 

1. Data Preparation 

In this step, we started by fetching the API documents from their online resources in order to process their 

content, which means that we must a content with pure text data only. In our selected documents, we focused 

on retrieving the parts or sections that were rich in the textual content about the conceptual interoperability 

constraints. For example, the Overview, Introduction, Guide, API reference, and Summary webpages of the 

documentation website. The final output of this preparation is a filtered text. Thus, we performed this prepa-

ration as the following into two procedures: 

─ Automated Filtering 

2- Data 
 Collection 

3- Data  
Analysis 

1-Data 
Preparation (Auto-

mated & Manual Filter-
ing) 

Fig. 6. Case execution process 

https://developers.soundcloud.com/docs/api/guide
https://developers.soundcloud.com/docs/api/reference
https://developers.google.com/maps/web-services/
https://msdn.microsoft.com/en-us/library/office/mt124991.aspx
https://instagram.com/developer
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
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We implemented a simple PHP code using Simple HTML DOM Parser 4 library to filter out the API 

documentation from noise. (i.e., headers, images, tags, symbols, html and JavaScript code) and to keep 

only the textual content. In our implementation, we pass an API document link as input for the PHP 

method in the abovementioned library as the following: file_get_html (link) and we get back the output 

as a text content. Then, we keep the output as a text file to be manual reprocessed, as we explain in next 

step (manual Filtering).  

─ Manual Filtering  

The automated filtering described in the first process is limited to detect some usual and known patterns of 

noise, which do not satisfy other noise cases like text mixed with pure code that occurs frequently in many 

API documentations. There are also some irrelevant textual sentences that do not match our interest in 

conceptual constraints and are hard to be filtered automatically (i.e., references like “see also” and “for 

more information”, “copyrights”, “related topics”, “titles”, etc.). Additionally, such sentences could mislead 

the machine learning in our later research steps. Therefore, we handled these sentences by filtering them 

out manually for more relevant and accurate data. 

2. Data Collection 

In this step, we cut the textual input resulted from previous step into single sentences within the data 

extraction sheet that we created according to the design we mentioned in section 4.1 Study Design. This 

resulted in a structured and organized sheet (see the excerpt example of the sentence retrieval output in 

Table 5). 

Table 5. Data extraction sheet with example of collected data from 3 cases 

Sentence id Sentence COINS Type 
API Document 

(case) 

1 All images must reside in the Watch app bundle.  AppleWatch 

2 A user is encapsulated by a read-only Person object.  Skype 

3 All rate limits on the Instagram Platform are applied on 

a sliding 1-hour window. 
 

Instagram 

 

   

We filled the data extraction sheet gradually as we execute each selected case. That is, at the very beginning 

we had only the sentences retrieved from the API documentation of SoundClound case. After analyzing the 

collected data [ see section 2.3], we started the execution of the next case, prepared its data and retrieved its 

sentences into the data extraction sheet and so on so forth.  

 

Note: We developed a data storage, which is a local repository to store and organize all of the following data 

 The original HTML pages of the pre-processed documentation 

 The excel sheet for each case (each API documentation) 

 Other used artifacts (the links of the API documentation) 

                                                           
4 Simple HTML DOM: http://simplehtmldom.sourceforge.net/ 
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This storage has some advantages like enabling us to access the data sources without reconnecting to their 

online sources and re-retrieving it from there. This guaranteed data consistency and independency. One re-

markable feature for this scenario is that, researchers can easily replicate and re-perform our study on the same 

data. It is worth mentioning that, when we revisited the API documentation on their online sources, we noticed 

that, there were some updates and removals in the contents, which means that, in the long-term a lot infor-

mation may be changed. Therefore, it would be an impossible task for future researchers to perform any kind 

of replication for our research. Fig. 7 shows our data repository content within the preparation and the data 

collection processes. 

 

Fig. 7. Data Storage along data preparation and collection 

 

3. Data analysis  

In this stage, we performed our content analysis method on the collected data from a case under execution 

as we depict in Fig. 7 and explain in detail below. 

Incremental building of the ground truth. 

We manually investigated the meaning of each sentence collected in the data extraction and we checked if 

it could be mapped to any of the classes covered by our interpretation criteria. This interpretation criteria is 

the “Constraints of the COIN Model [1], which directs our decision about classifying each sentence as having 

a COIN instance of a specific class (i.e., syntax, structure, dynamic, context, semantic) or as not having a 

COIN instance at all (i.e., Not-COIN).  

Obviously, this manual analysis took too much mental effort and time to analyze each of the 2283 sentences 

that we have in our data storage. In fact, this is one of the most challenging phases of our research and it 
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represents a corner stone in our research. The result of this step in each case was an increment in our ground 

truth (i.e., COINs corpus), which we will adopt later in the second part of our research. Hence, this process 

was performed by two researchers, each classified all sentences for each case separately (i.e., each sentence 

was classified twice in a separated way). In multiple discussion sessions, the two researchers compared their 

decisions; resolved conflicts based on consensus, and stored the classification decision in the extracted sheet. 

We summarize our spent effort in manual filtering and classification tasks in terms of time per document as 

shown in Table 6 and Fig. 8. Total effort in time with respect to the document size.  

According to the information, we can easily conclude that there is a relation between the efforts in term of 

time and the size of the documents being analysed. Hence, we can observe that Eclipse Plugin Dev documen-

tation has the largest size compared with the others. SoundCloud on the other side took much time compared 

with its document size, because it is the first case study that we analysed, and we spend much time to record 

the correct COIN type for each sentence. 

Table 6. Total effort in time with respect to the document size 

API Document 
Total 

 number of sen-
tences 

Document 
 manual filtering 

(Minutes) 

Sentence Classi-
fication (Hours) 

Total  
efforts  
(Hours) 

Total  
efforts  

(Minutes) 

Sound Cloud 219 40 7 7.7 460 

GoogleMaps 473 60 5.5 6.5 390 

AppleWatch 360 60 7 8.0 480 

Eclipse Plugin Dev 651 60 11 12.0 720 

Skype 325 30 4 4.5 270 

Instagram 253 20 4.5 4.8 290 

Total 2281 270 39 43.5 2610 

 

 

 

Fig. 8. Total effort in time with respect to the document size 
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Incremental identification of the COINs’ patterns. 

The final procedure in the case execution was manually analyzing its sentences that were classified as hav-

ing COIN instances, in order to identify the patterns and detection rules of each COIN class. In specific, we 

investigated each sentence of the case and started taking our notes on any observed frequent occurrence of 

words, sentence structures, or any other noticeable format. We were also looking for any correlation between 

the sentences’ phrases for each COIN class. In addition, we stored these identified patterns into a different data 

sheets as we will explain in more details in next section. Actually, we incrementally refined these patterns and 

discovered more patterns as we execute each case. Fig. 9 shows the content analysis method ‘process flow’ 

that we followed in our research to identify the patterns and also to create the ground truth (i.e. corpus). While 

Fig. 10 shows a snapshot of examples of the manual identification of the patterns in GoogleMaps. 

 

Fig. 9. Content analysis method 'process flow' 

 

 

Fig. 10. Snapshot of the manual identification of the patterns 
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Cross-Case Analysis.  

Ground Truth (COINs Corpus) 

Two COIN Corpora. After executing all cases, we arranged the incrementally contributed ground truth 

(i.e., COINs Corpus) into two different versions as the following: 

 Seven-COIN corpus: in which, each sentence belongs to one of Seven-COIN classes (i.e., not-COIN, dy-

namic, semantic, syntax, structure, context, or quality). 

 Two-COIN corpus: in which, each sentence belongs to one of two COINs classes so called: ‘Two-COIN’ 

instead of seven classes. That is, each sentence can be either a class of COIN (i.e.; dynamic, semantic, 

syntax, structure, context, quality) or a class of not-COIN. In fact, the Two-COIN corpus is derived from 

the Seven-COIN corpus by abstracting six of its classes into one class called 'COIN'. The aim behind de-

riving this new abstracted corpus is for later training of our ML model on two classes instead of seven, as 

this would achieve better accuracy results (we explain this issue in details in chapter 5).  Fig. 11 shows the 

algorithm of creating the Two-COIN corpus from Seven-COIN corpus, while Fig. 12 shows the content of 

each two corpora.  

 

Fig. 11. Pseudo code of deriving Two-COIN corpus from Seven-COIN corpus 

 

Fig. 12. Seven-COIN corpus and Two-COIN corpus structure 

Here, we explain an example of the results of the created Two-COIN corpus from Seven-COIN corpus using 

the above mentioned algorithm as the following: Table 7  shows an example of the data extraction sheet of the 

Seven-COIN corpus Two-COIN corpus 
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Seven-COIN as input Corpus, while Table 8 shows an example of the resulting data extraction sheet, which is 

the Two-COIN Corpus as output. 

Table 7. Example of the data extraction sheet of the Seven-COIN Corpus 

Table 8. The data extraction sheet of Two-COIN 

 

Case-share of sentences in the Ground Truth (COINs Corpora).  

We have summarized this information in Table 9, which shows the number of sentences collected from each 

case.  

 

Table 9. The distribution of API Documentation 

API Domain Documentation # Sentences 

Web-Service 

SoundCloud 219 

GoogleMaps 473 

Skype 325 

Instagram 255 

Platform API 
AppleWatch 360 

Eclipse-plugin 651 

Total 2283 

 

In Table 9, we can see that, the less number of sentences belongs the SoundCloud API documentation, 

because this documentation has some limitation of the offered services compared with other services like 

Sentence 
id 

Sentence COIN  Type API Document 

1 All rate limits on the Instagram Platform are applied on a sliding 1-hour 
window. 

not-COIN 
Instagram 
 

2 When it is finished manipulating the object, it releases the lock. dynamic Eclipse 

3 A user is encapsulated by a read-only Person object. structure Skype 

4 indoor indicates that the calculated route should avoid indoor steps for 
walking and transit directions. 

syntax Google-MAP 

5 the connection ids can be used to share tracks and playlists to social net-
work. 

semantic SoundCloud 

6 Directions may be calculated that adhere to certain restrictions. context Google-MAP 

7 your interfaces need to display information quickly and facilitate fast 
navigation and interactions. 

quality AppleWatch 

Sentence 
id 

Sentence COIN Type API Document 

1 All rate limits on the Instagram Platform are applied on a sliding 1-hour 
window. 

not-COIN Instagram 

2 When it is finished manipulating the object, it releases the lock. COIN Eclipse 

3 A user is encapsulated by a read-only Person object. COIN Skype 

4 indoor indicates that the calculated route should avoid indoor steps for 
walking and transit directions. 

COIN Google-MAP 

5 the connection ids can be used to share tracks and playlists to social net-
work. 

COIN SoundCloud 

6 Directions may be calculated that adhere to certain restrictions. COIN Google-MAP 

7 your interfaces need to display information quickly and facilitate fast 
navigation and interactions. 

COIN AppleWatch 
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GoogleMaps or even AppleWatch. We also observed that the maximum number of the sentences obtained 

from Eclipse-plugin, obviously its API documentation is very huge, because there are many methods used for 

developing plugins inside eclipse platform. 

COIN-Class share in the Ground Truth (COIN Corpora). The COIN-class (e.g., Not-COIN, dynamic, 

semantic, syntax, structure, context, and quality) is distributed over the Ground Truth in the COIN corpora 

non-equally. There are some classes like not-COIN, dynamic, semantic contribute of the majority of the 

COINs which is 91% of the total classes. For example, we observed that the Not-COIN class constitutes 

about 42% of the total classes, while the dynamic class constitutes about 25% and the semantic class con-

stitutes about 24% of the total classes in the Ground Truth (COIN Corpora). On the other hand, we observed 

there are a few contribution of the other classes like (structure, syntax, quality and context). They comprise 

together about 9% of the total classes. These statics are illustrated in Fig. 13. While, Fig. 14 demonstrates 

the distribution of COIN-Classes in the second corpus (Two-COIN corpus). 

 

 

Fig. 13. Seven-COIN instances distribution 

 

 

 

 

Fig. 14. Two-COIN instances distribution 

 

 

COIN-Class share in each case. We have deeply investigated this information and documented the results as 

shown in Table 10 and Fig. 15. These statistics reveal much information about the structure of each API doc-

ument. We mean by structure is the contents of each API documents in terms of COINs types (e.g.  Not-COIN, 

dynamic, semantic, structure, syntax, context, quality). 
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Table 10. COINs classes distribution per each case 

COIN Type Not-COIN dynamic semantic structure syntax context quality 

SoundCloud 46.1% 26.9% 18.3% 4.6% 3.2% 0.9% 0.0% 

Google Maps 63.0% 11.2% 13.1% 1.7% 6.6% 2.1% 2.3% 

AppleWatch 40.8% 26.1% 25.0% 6.1% 1.1% 0.3% 0.6% 

Eclipsse-plugin 29.0% 32.4% 30.1% 6.5% 0.9% 0.0% 1.1% 

Instagram 41.6% 29.8% 25.1% 2.0% 0.0% 0.0% 1.6% 

Skype 36.6% 23.7% 29.5% 6.2% 2.8% 0.0% 1.2% 

Grand Total 42.0% 25.0% 24.0% 4.7% 2.5% 0.6% 1.2% 

 

 

 

Fig. 15. Cases distribution over COINs 
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COIN patterns 

 

“RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the 

NL text of API documentation?” 

 

What is patterns? 

First, we define patterns as any frequent used of both terms and sentence structure. More specifically, a 

frequent term is any word is a used repeatedly in some sentences and occurs normally individually (single 

word per single sentence), for example the terms  XML, iOs, XPath, HTTP, etc. are words used many times 

in different sentences in some COINs classes like Not-COIN class. While, sentence structure is more specific 

terms than just single term in a sentence. They constitute the formation/construction of a sentence, for example 

there are sentences begin with the phrase “if” and the clause “, then”. Another example some sentences begins 

with pronouns like ‘You’ and followed by ‘Modal Verb’ like you must or it must or we must, etc. these kinds 

of patterns we define them as sentence structure, because they are not a single term. 

After collecting the data and classifying it for each case, we focused on identifying the significant patterns 

of the text that would put us on the right road towards machine automated identification of COINs in text on 

behalf of human architects and analysts. As we mentioned earlier in section 4.2 that the analysis process was 

performed in a gradual manner (i.e., case after case). In each case, we extracted the noticed patterns for each 

COIN class.  

Having this being said, in this cross-case analysis, we studied the textual content of all cases that is gathered 

within the Seven-COIN Corpus more deeply and carefully. That is, we mined the content of the corpus sen-

tence by sentence and word by word. The more data we studied, the more patterns (terms and sentence struc-

tures) we discover, since every case study has different aspects and conceptual constraints. 

Such a work is a tedious manual task that took us about 20 days  and 8 hours per a day to accomplish. Some 

sentences required us to read them more than once to comprehend the accurate meaning first, and then extract-

ing the cross-case patterns, proportional relationships, and similarities. This cross-case analysis helped us to 

refine our identified patterns. In the other words, the more COINs we include in the cross-case analysis, the 

more accurate and significant patterns we discover. 

─ Finally, we created a list of the top used terms in each class as shown in Table 11. For a complete list of 

the most frequently used terms per each class, please see appendix  (B. Top frequently terms), which we 

created during our analysis process. 

Table 11. Top 5 terms are frequently used per each class 

Dynamic Semantic Structure Context Syntax Quality 

job user interface direction calculate user 

user plug content time-share route direction 

app app app available indicate provide 

client provide contain bicycle specify access 

interface platform collection drive user api 
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It is important to mention that, we focused on identifying patterns for three COIN classes (i.e., Not-COIN, 

dynamic, semantic). This is simply because they have the three biggest shares of sentences in the Seven-COIN 

corpus. In total, these three classes constitute about 91% of sentences in the corpus as shown in Table 12. 

Table 12. Total Ratio of the majority COINs 

COIN Type Ratio 

Not-COIN 42.0% 

Dynamic 25.0% 

Semantic 24.0% 

Total 91.0% 

 

Next, we show our identified patterns for these three classes with detailed examples. Note: For all three classes 

we created a table, in which we highlighted the detected pattern in red color within the example. 

Patterns of the Not-COIN class. In this class, we observed the following patterns:  

─ Frequent terms: The predominant part of terms in this class are the Technical Keywords, which are 

mainly abbreviation of technical terminology and programming keywords. For example (XML, iOS, 

XPath, JavaScript, ASCII, KB, MB, etc.). In our corpus there are about 30.7% (of the Not-COIN class) 

has technical keywords. This means that, there are about 295 COINs of 960 COINs have one or more 

technical term (see Table 13 the first row). 

For further clarification, Table 13 is composed from five columns. First columns is a pattern type (e.g. 

frequent terms or sentence structure). Second column is a pattern name (e.g. technical keywords, sen-

tence begin with some term, sentence contains some terms, etc.). Third column is example of the pattern 

term. Forth column is a real example from the corpus, Fifth column is the total number of the occurrence 

of the pattern in the corpus with respect to the COIN class and last column is the percentage of the 

occurrence of the pattern in the corpus with respect to the COIN class. Note that in the fifth column the 

cell values do not add up to 100% as there are minor patterns that take a share of it but we do not cover 

them in the table. 

─ Sentence structures: the second part of the patterns are sentence structure, as aforementioned these struc-

tures are illustrated as shown in all rows of Table 13 except the first row.  

In this regard, we observed that, there are relatively two significant patterns in this class, which are: 

 Sentences contain variables, symbols and tags. For example a sentence “XML responses consist of 

zero or more <route> elements.” It is classified as Not-COIN, as you can see contains some tags 

and technical terms. Such tags and the special characters like ‘/’,’\’,’<’,’>’ constitute 13.9% from 

the whole not-COIN class. 

 Sentences begin with the terms, like “for example”, ” for information” and sentences contains terms 

like  “see”, “learn”, “let’s”  all together constitute 12.8%. 
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Table 13. Identified patterns of Not-COIN class 

Pattern Type 
Pattern 
Name 

Example COIN with pattern example 
COINs 
count 

COINs % 

Frequent 
Terms 

Technical 
keywords 

XML, iOS, XPath, 
JSON, OSGi, SDK, 
HTTP, GET, POST, 
etc. 

these resources can be accessed 
and manipulated using the HTTP 
methods GET, POST, PUT and 
DELETE. 

295 30.7% 

Begins with 

for example 
for example, a user may enter an 
address as '5th&Main St.' 

123 12.8% 

for information 

for information on how to present 
new interface controllers, see inter-
face Navigation. 

For more information about notifi-
cation payloads, see Specifying a 
Notification Payload for Testing. 

contains 

see 

for a full list of properties that can 
be set on a sound resource, see the 
/tracks endpoint reference. 

See Transit Details below 

See also: /me endpoint reference 
documentation. 

Learn Learn how to get a key. 

let’s 
Let's look first at the scopes defined 
by the platform runtime: 

the following 
Currently the following activity 

types are supported: 
62 6.5% 

Begins with  figure shows 
Figure shows the default JSON file 
that comes with your project. 

10 1.0% 

Ends with : as follows 
the help command supports -scope 
argument, which should be used as 
follows: 

85 8.9% 

Contains  
variables names , 
path tags: ‘/’ , '<' ,'>' 

Neither requires an access_token or 
client_id. 

133 13.9% 

 

Patterns of the dynamic class. In this part, we extracted the most used patterns in terms of terms and 

sentence structures. 

─ Frequent terms: during our studying and analysis of the dynamic COINs, we observed that, this class 

contains many activities, events that depict the data and process flow, and commands to perform direct 

tasks or activities. Therefore, we came up with a special list of terms and we called it “Action Verbs”. 

Example of these verb terms includes but not limited to (create, use, access, request, etc.). Actually, they 

represent about 35.8% of the total number of sentences with dynamic COINs. This means that, there are 

204 COINs from 570 COINs have at least one or more Action Verb. See Table 14 (first row). We also 

provide a complete list of the Action Verbs in the please see appendix  (B. Top frequently terms).  
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─ Sentence structures: as we explained in the beginning of this section, the sentence structures belong to 

different terms. This class has specific patterns in terms of conditional statements, method call, and var-

iables. See Table 14. 

 

 

Table 14. Identified patterns of Dynamic class 

Pattern 
Types 

Pattern Name Example COIN with pattern example 
COINs 
count 

COINs % 

Frequent 
terms 

Action Verbs 

create, use, request, access, 
plug, lock, include, set-up, run, 
start ,call-up ,redirect.  Please 
see the Action Verbs list in the 
appendix for more details. 

instead, create a complementary experi-
ence to your iOS app. 

204 35.8% 

Sentence 
structures 

Begin with 
Conditional state-
ment       

if , when, once, while, as long as 
,unless 

if a command name is specified, the help 
message for this command is displayed 

137 24.0% 

note that as long as the sound is public, 
you will only need to provide a client_id 
when creating a client. 

once the state is finished it is ready to be 
embedded or streamed. 

when building a valid URL, you must en-
sure that it contains only those charac-
ters shown above. 

while it owns this rule, it is only allowed 
to modify files within that directory sub-
tree. 

Unless otherwise stated, the values null 
and the empty string are equivalent to 
omitting the property. 

Contains 
Conditional  
statement 

if , when, once, while, as long as 
,unless 

the request may succeed if you try again. 

100 17.5% 

this feature is available only when con-
necting through telnet or ssh. 

you should exercise extreme caution 
when acquiring and releasing scheduling 
rules using such a coding pattern. 

Begin with 
 
 

You + Modal Verb (e.g must, 
have to, should , will, may, can) 

you can follow a user using the /me/fol-
lowings endpoint. 

34 6.0% 
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you must have an existing iOS app to cre-
ate a Watch app. 

you should now store the access token in 
a database 

imperative(commands verbs) 

click the Store icon to navigate to the 
Skype client s entry. 

19 3.3% 
Build a dynamic view of a user s person 
list with content from the Groups collec-
tion. 

e.g.  (to + verb  …… , verb) 

to end a subscription, call the subscrip-
tion.dispose method. 

22 3.9% 
to create a new notification interface, 
drag a notification interface controller 
object to your storyboard file 

Method call 

1. call, invoke, use 
method/function. 

2.  
3. function expression e.g. 

get(),set(a) 

you create sets using our API by creating 
a client and calling the post method with 
the /playlists endpoint and information 
about the set, including a list of track ids. 

68 11.9% 

Contains After/Before as connector 

after a job finishes running, its reference 
to the progress group is lost. 

37 6.5% 

the setuser call must also be made be-
fore the job is scheduled. 

Begin with note(that) 

note if you are going to stream from our 
API you need to attribute properly. 

16 2.8% 

note that in this case, object_id is the tag 
to which you would like to subscribe. 

Contains via/through 
this feature is available only when con-
necting through telnet or ssh. 

20 3.5% 

Contains Variables  names: ‘_’ , ‘/’ 

Some API only require the use of a cli-
ent_id. 

38 6.7% 
you can also optionally include a 
transit_mode and/or a transit_rout-
ing_preference. 
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Patterns of the semantic class. In semantic class, we observed different kinds of terms and sentence struc-

tures. Table 15 explains these observed patterns with examples as the following: 

- Frequent terms (first three rows in Table 15): In this class, we classified some frequent terms into 

three different lists as the following: Output/Input verbs, Supporting verbs, and Admission verbs. See 

Appendix (Table 34. Output/Input verbs, Table 35. Supporting verbs and Table 36. Admission verbs). 

The total summation of these patterns equals (103+90+74=267), which constitute 48.7% of the over-

all semantic class. 

- Sentence structures (all rows in Table 15 except the first three columns). In which there are sentences 

contains some structure like the sentence contains “by” and followed by “Gerund”, or there are sen-

tences begin with “for” and followed by “Noun” or “Gerund”. As another example, there are sen-

tences contains “so that”, ”because”, ”in order to”. 

 

Table 15. Identified patterns of Semantic class 

Pattern 
Type 

Pattern 
Name 

Example COIN with pattern example 
COINs 
count 

COINs % 

Frequent 
terms 

Output/Input 
verbs 

return, receive, display, response, 
send, notify retrieve, select, read, re-
cover, access, fetch, upload, down-
load, submit, recall, share, result 

Thus the help command will display help 
only for the commands with the specified 
scope. 

103 18.8% 

Supporting 
verbs 

support, provide, Suggest, give, pro-
pose. 

A dynamic notification interface lets you 
provide a more enriched notification ex-
perience for the user. 90 16.4% 

Admission 
verbs 

allow, enable, admit, let,  give, grant, 
permit, facilitate, authorize, prevent, 
stop, avoid 

The console allows custom command 
completers to be provided. 

74 13.5% 

Sentence 
structures 

Contains by + {Gerund}  

Action buttons save time for the user by 
offering some standard responses for a 
notification. 

29 5.3% 

Begin with for + {Noun or Gerund}  

For remote notifications, add the title 
key to the alert dictionary inside the pay-
load. 7 1.3% 

Contains for + Noun/Gerund 

Eclipse provides a common user inter-
face (UI) model for working with tools. 

30 5.5% The plug-ins that make up a subsystem 
define extension points for adding be-
haviour to the platform. 
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You can search for directions for several 
modes of transportation, include transit, 
driving, walking or cycling. 

Begin with 

if you+….,  will + (be) / you can  

if you want to load the library separately 
from the HTML code, you can call the 
oEmbed endpoint with the omitscriptpa-
rameter. 13 2.4% 

in (that)(this) case 

In that case, the platform uses some heu-
ristics to determine which one should be 
selected. 4 0.7% 

it + modal verb + (be) 
 

It should be stable enough so that indus-
trial strength tools can build on top of it. 

5 0.9% 

note(that) 

note: Tapping your app s glance interface 
always launches the app. 8 1.5% 

( to + verb ) …… , verb 

to embed instagram content you need to 
first visit the post on the web and get the 
embed code. 7 1.3% 

(use)(using) + …. + to 

use promise chaining to prevent applica-
tion logic from changing the state of an 
object until the object is initialized and 
ready 26 4.7% 

when 

When configuring the interface, specify 
the JSON data file containing the test 
data you want delivered to your inter-
face. 12 2.2% 

you can, you could 

you can cancel a presence subscription 
for a given person at any time. 29 5.3% 

Contains 

in order to, so that, because 

Many developers use this flow because 
of its convenience. 

16 2.9% 

it should be stable enough so that indus-
trial strength tools can build on top of it. 

we will gloss over a lot of details in order 
to get the plug-in built and running. 

(user)(you)(we) + modal verb 

With a dynamic interface, you can dis-
play more than just the alert message. 

37 6.8% 
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5.3 Discussion 

After we reviewed the results and statistics from table (Table 13. Identified patterns of Not-COIN class, 

Table 14. Identified patterns of Dynamic class and Table 15. Identified patterns of Semantic class)  which 

contains the frequent patterns in the sentences and the ratio of each pattern that occurs in each COIN class. 

(Not-COIN, Dynamic and Semantic) classes. Thus, we observed that, our Seven-COIN Corpus has imbalance 

amount of sentences from each COIN class as the following: 

 The majority of the COINs about 34.4% of the total COINs are classesified as not-COIN class, the reason 

is because there are   many technical description and many technical terms used in the API documentation. 

 The minority of the COINs are classesified as (context, structure, syntax, quality), because these kinds of 

COINs describe the service usage context, terminology definitions or quality attributes of services or sys-

tems, which are rarely mentioned in the APIs.   

 COINs of type (dynamic and semantic) are distributed equally. The dynamic class has a ratio of 28.3%, 

while the semantic class is about 27.4% from the whole COINs. 

The second observation is that: the statistics in (Table 10. COINs classes distribution per each case)  reveals 

very important information about the COINs distribution over each case study. For example: 

 SoundCloud: is easy to read and to find out the conceptual constraints. Most of the sentences in the API 

documentation are short and direct to understand, which does not confuse the reader to extract any of the 

COINs. In addition, this documentation has a small size compared with the other API documentation in our 

corpus.  

 The GoogleMaps APIs has the majority of not-COIN class of 298 from the total number of GoogleMaps 

COINs which are 473, which means there are more than 62% of the COINs in GoogleMaps are only belongs 

not-COIN class. And this is very huge ratio compared with its COINs size and also with the other cases. 

This is because the GoogleMaps API documentation has a lot of technical terms. Moreover, there are few 

concepts, background paragraphs. GoogleMaps APIs seems to be more technical than conceptually. 

 Eclipse-Plugin has a balanced COINs distribution, especially for (not-COIN, dynamic, semantic). In addi-

tion, it has the highest number of COINs of type structure of 42 COINs. Therefore, we can conclude that, 

these balances are  due  to many reasons:  

o Eclipse-Plugin is the largest APIs we extracted and it contains 651 COINs. 

o It has many sections for describing the concepts and the abstract level of knowledge, such as: abstract, 

introduction, and overview section.  

o It has less technical information. 

 AppleWatch: has very well structural paragraphs, even it is long documentation, but it is easy to track and 

read. In addition, this documentation has three main classes. These are, Not-COIN of 40.8%, Dynamic of 

26.1% and Semantic of 25.0%.  
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5.4 Threats to validity 

Generalizability 

 

To avoid having results applicable for one case of API documents and to make our findings generalizable, 

we decided to include multiple cases in our search for the COIN patterns in textual sentences. That is, we have 

chosen six API documentations, which are: SoundCloud, GoogleMaps, Skype, Instagram, AppleWatch and 

Eclipse-Plugin Developer Guide. Moreover, we have collected data from another API documents which is 

from Amazon Storage Service S3, but unfortunately, we ran out of time to analyze it, although we have pro-

cessed it. In general, we have covered 2283 sentence from the six cases, which gave us a good impression of 

the typical amount of COINs as well as their distribution in the API documents. 

 

Completeness 

Due to time limitations, we were unable to analyze a large number of API documents despite of its promi-

nent role in finding out more patterns. However, we have selected inclusive parts of the large API documen-

tations (e.g. in the API document of Eclipse, we covered the Plug-in part that has about 651 sentences).  

In fact, manual processing of data takes a very long time, and the reason behind that is due to the need firstly 

to cleaning data from noise (such as images, tables, symbols, etc.) and then organizing paragraphs into short 

sentences, and after that we analyzed these sentences manually to extract patterns, which we build the rules 

based on it, then we fed it up to the classification model. The accuracy of the automated classification model 

affected significantly by the quality and quantity of this data. 

 

Researcher bias 

In this thesis, we built our corpus in a way that guarantees results accuracy and impartiality. Accordingly, 

the manual classification process. The manual classification process is a process of identifying the proper 

COIN class (i.e. Not-COIN, Dynamic, Semantic, Syntax, Structure, Context and Quality), which is performed 

through a manual labor by reading the sentence and understand the meaning using of the Constraints of COIN 

Model [1]. Understanding the sentence correctly plays an important role in determining the right COIN class, 

and that the 

In our research, the manual classification process was performed separately by two researchers from the Soft-

ware Engineering Research Group (AGSE) of University of Kaiserslautern. Each researcher classified the 

retrieved sentences from the API documents independently. Our process flow for the document classification 

is shown in Fig. 16 
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Fig. 16. The classification process performed by two different researchers 

The classification processes were performed in four stages as the following: 

First: Both researchers started classifying the sentences of each API documents based on the COINs sheet 

model [1] as shown in Table 1. 

Second: After classification and in multiple discussion sessions, the researchers compared their classifica-

tion decisions. For conflicting classifications, they created a "non-agreed list” to be re-discussed and re-clas-

sesified later and continued comparing the rest of the COINs and kept them in an "agreed list". Then, the 

researchers revisited the "non-agreed list", discussed and resolved based on consensus. 

We evaluated the accuracy of this process by using agreement percentage [50], which was almost 75%. 

Agreement Percentages is shown  in We evaluated the accuracy of this process by using agreement percent-

age [50], which was almost 75% that we obtained using the following formula: 

𝑃𝐴 =  
𝑁𝐴

𝑁𝐴+𝑁𝐷
 × 100          (1) 

Where PA refers to the percentage of agreement, NA the number of agreements, and ND No the number of 

disagreements [50]. 

Third: Collecting the final classified document into one final data sheet, that was the input for all the later 

analysis activities. It was used to discover the patterns as we described previously in section  5.2 and was used 

to feed up our ML model as we explain later in the next chapter. 
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COIN Model 

<categorization 
criteria> 

Manual 
Categorization 

Classified 
Document 

Manual 
Categorization 

Classified 
Document 

Uncategorized 
document 

<Input> 
<<input>> 

Final Categorized 
 Documents 

<Output> 

Discussion 

Not agreed 
Categorization 

Discussion & 
 resolution 

Uncategorized 
document 

<Input> 
<<input>> 

Agreed 
Categorization 

Researcher 1 

Researcher 2 



Research part two: Automatic identification of COINs using ML and NLP 

 

47 

 

6 RESEARCH PART TWO: AUTOMATIC 

IDENTIFICATION 

 

In this part of our research, we aim at answering the second research question, which is: 

“RQ2: How effective would it be to use Natural Language Processing (NLP) along with Artificial Intelligence 

(AI) technologies to automate the extraction of COINs from API documentation?” Please see 

 Fig. 17.  

 

Fig. 17. 'Process Flow' of the first machine learning classification approach 

 

 

To achieve this, we used two different approaches to investigate the potentials of using technologies from 

machine learning and natural language processing. The first approach is Rule-based classification system using 

NLP with ML. While, the second approach is ML classifiers using Bag-of-Words model.  

In this chapter, we explain each approach in details showing the exploratory experiment configuration, 

execution, and performance results in terms of accuracy. 

6.1 First Approach: Rule-based Machine Learning Classification 

 Within this approach, we aimed at investigating the benefits of utilizing our manually identified patterns 

through NLP technologies in extracting the representative features of the textual sentences in the COIN Corpus 

as a matrix of attributes. For this goal, we adapted and extended our discovered patterns (which we observed 

in our multi-case study) into rules that we could use for training a machine learning model. 

Rule construction using NLP 

As we mentioned earlier, we identified the frequently used terms and sentence structures for the main three 

COIN classes (Not-COIN, Dynamic, and Semantic). 

  In this class, we observed the following patterns:  

Frequent terms: The predominant part of terms in this class are the Technical Keywords, which are mainly 

abbreviation of technical terminology and programming keywords. For example (XML, iOS, XPath, JavaS-
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cript, ASCII, KB, MB, etc.). In our corpus there are about 30.7% (of the Not-COIN class) has technical key-

words. This means that, there are about 295 COINs of 960 COINs have one or more technical term (see Ta-

ble 13 the first row). 

  For further clarification, Table 13 is composed from five columns. First columns is a pattern type (e.g. fre-

quent terms or sentence structure). Second column is a pattern name (e.g. technical keywords, sentence begin 

with some term, sentence contains some terms, etc.). Third column is example of the pattern term. Forth col-

umn is a real example from the corpus, Fifth column is the total number of the occurrence of the pattern in 

the corpus with respect to the COIN class and last column is the percentage of the occurrence of the pattern 

in the corpus with respect to the COIN class. Note that in the fifth column the cell values do not add up to 

100% as there are minor patterns that take a share of it but we do not cover them in the table. 

Sentence structures: the second part of the patterns are sentence structure, as aforementioned these structures 

are illustrated as shown in all rows of Table 13 except the first row.  

In this regard, we observed that, there are relatively two significant patterns in this class, which are: 

Sentences contain variables, symbols and tags. For example a sentence “XML responses consist of zero or 

more <route> elements.” It is classified as Not-COIN, as you can see contains some tags and technical terms. 

Such tags and the special characters like ‘/’,’\’,’<’,’>’ constitute 13.9% from the whole not-COIN class. 

Sentences begin with the terms, like “for example”, ” for information” and sentences contains terms like  

“see”, “learn”, “let’s”  all together constitute 12.8%. 

  We improved and reformulated these observed patterns. That is, we involved a wider range of terms and 

sentence structures by utilizing both the observed (terms, patterns and rules in the multi case study) and the 

“Constraints of COIN Model”. Based on this, we constructed the rules needed in the Rule-based classifica-

tion approach. This rule construction was performed by utilizing NLP techniques (i.e., sentence tokenizing, 

stemming, stopwords removal, part of speech recognition, N-Grams). In our research, we used NLTK  (i.e., a 

leading platform for building Python programs to work with human language data). Table 16 summarizes 

our rules with examples for more than 13 rules, but we described the most 13 significant ones, and these 

rules are (Definition, Goal, Conditional, Explanation/Example, Method Call, Modal Verb, Resource, Struc-

ture, Technical Term, Variable, Warning, Output/Input and Action Verb)  
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Table 16. Rules Names with examples 

# Rule name Example of sentences satisfying the rule 

1 Definition  oEmbed is an open standard to easily embed content from oEm-

bed providers into your site 

2 Goal  Background actions launch the containing iOS app in the back-

ground so that it can process the action 

3 Conditional  if a command name is specified, the help message for this com-

mand is displayed. 

4 Explanation/Example  for example, you can use this to protect against CSRF issues. 

5 Method Call in order to embed a player widget using JavaScript SDK, you can 

call SC.oEmbed() function 

6 Modal Verb you can also get a list of comments for a specified sound 

7 Resource artifacts for each tool, such as files data, are coordinated by a 

common platform resource model. 

8 Structure Fundamentally, a bundle is just a collection of files (resources 

code) installed in platform 

9 Technical Term instead, create a complementary experience to iOS app. 

10 Variable Some API only require use of a client_id. 

11 Warning do not assume access_token is valid forever. 

12 Output/Input  on success, function returns true. 

13 Action Verb to perform a task, a plug-in creates a job then schedules it. // see 

Appendix 

 

1- Definition: This rule is implemented to check the sentence grammar or structure looking for defini-

tions. This rule extends the linguistic rules that are stated in [51], to cover more cases that what we 

observed in our multiple-case study. For instance, we included additional patterns for sentences in-

cluding definitions like “is called as”, “is known as” and “is declared as”. This rule is mapped to 

Syntax COIN. 

2- Goal: We established some rules to discover if a sentence is stating a goal. For this purpose, we 

implemented a method that utilized NLTK5 & Python6. For example, a sentence that contains terms 

like: (so that, in order to, to +verb + any word(s) +’,’ + any verb, etc.). This rule is mapped to Semantic 

COIN. 

Examples: a sentence: “a client must have a user_name and a password in order to log in to the 

server”.  

3- Conditional Statement: This rule detects the preconditions by checking if the sentence begins with 

a conditional clause that starts with like (if, when, once, while, until) and its other clause begin with 

‘,’ + then. This rule is mapped to Dynamic COIN. 

4- Explanation/Example: This rule detects if the sentence contains some kind of further explanation or 

examples. There are special words that we observed them to be used in such statements like: for 

example, as an example, for instance, etc. This rule is mapped to Not-COIN. 

                                                           
5 NLTK is a leading platform for building Python programs to work with human language data. http://www.nltk.org/ 
6 Python is a programming language developed under an OSI-approved open source license, making it freely usable and 

distributable. https://www.python.org/about/ 
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5- Method Call: This rule aims at discovering the statements that has function calls. We developed a 

regular expression rule to detect if the sentence contains a function signature (e.g., Class.setText()) 

or some keywords (e.g., call, invoke, function, method, etc.). This rule is mapped to Dynamic COIN. 

6- Modal Verb: This rule aims at detecting modal verbs from the sentence. This rule is mapped to 

Dynamic COIN. 

7- Resource: This rule aim at detecting statements about required resources to use a function. We de-

fined a list of keywords, which are used to indicate resources words. Some instances of these key-

words in our list are (access, client, file, network, disk, and more.) This rule is mapped to Dynamic 

COIN. 

8- Structure: This rule aims at finding any structure design decisions declared in the textual sentences. 

Hence, we created the list of top 500 keywords for this rule based on the terms of the “Data Structures 

and Algorithms in Java, 6th Edition” [52].  These keywords list include (e.g., database, inherit, over-

ride, implement, extend, etc.). This rule is mapped to Structure COIN. 

9- Technical term: This rule aims at detecting technical terms like any keywords looks like abbreviation 

such as (XML, XPath, SQL, SSL, etc.). For this purpose, we use a regular expression (e.g., word with 

all capital letters or/and words with short characters and capitalized like ABC, SSL, etc.). This rule 

is mapped to Dynamic COIN. 

10- Variable: This rule aims at finding any variable in the sentence. This rule is developed by using 

regular expression, in which a given sentence is checked whether it contains any word represents a 

variable (i.e. client_id, _parameter, user_name, etc.). This rule is mapped to Dynamic COIN and Not-

COIN. 

11- Warning: This rule aims at detecting sentence that contains warning statements (i.e. take care, pay 

attention, be aware, be careful, etc.). In this case, we defined a list of terms that contains similar 

meaning of warning. This rule is mapped to Semantic COIN. 

12- Output/Input: The rule aims at detecting the activities of type input or output. We developed a 

method to check our predefined list, which contains keywords like (return, output, display, throw, 

etc.). This rule is mapped to Semantic COIN. 

13- Action verb: This rule is used to detect action verbs that describe activities (which we noticed to 

appear frequently in Dynamic COINs. For this purpose, we defined a list for these verbs (i.e. run, 

complete, open, process, start, etc.). For complete information about the Action Verbs, please see 

Appendix (Table 33).  This rule is mapped to Dynamic COIN. 

Exploratory Experiment 

After having our rules ready, we conducted the exploratory experiment to see the potential that Rule-based 

classification can bring to our goal to automate extracting the COINs from API documents. We performed this 

experiment in two phases as the following: 

Phase 1: Preparing the training data set. We aim by this phase at generating a data set to be fed back as a 

training set to the classification model, which in turn, train on it and later on predicts the right COIN Type. 

Bellow, we describe the process of this phase as the following:  

Input: The Seven-COIN corpus 
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Process:  

- For each sentence in a corpus 

1- If the rule is satisfied by a sentence, then the method for that rule return 1, 

2- Otherwise return 0. 

However, in some cases, methods might return integer value greater than 1, which is a summation 

of how many times the term in a sentence occurs. For example: in case of the rule “Technical 

Term”, the method is developed to scan the sentence and return the total number of technical terms 

(i.e. SQL, XML, iOs, etc.), which can be any number greater or equal to 0.  

Output: The result of this phase is a matrix of rules and sentences.  

 

This means, for each sentence it gets a score for each of the rules as seen in Fig. 18, which shows the 

snapshot of only the first 8 rules of the matrix for seven sentences. 

 

Fig. 18. Snapshot of an excerpt of the rule matrix 

We also show in Fig. 19 the distribution of our rules over the Seven-COIN classes. 
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Fig. 19. Rules distribution over the COINs Classes 

 

It can be noted from Fig. 18 some rules apply to all COIN Classes, but the decision is not based on one rule 

satisfaction, but on all rules together. 

Generally, we can observe that different COIN classes satisfy more than one rule. For example, all COIN 

classes share rules on structure keywords and technical terms. On the other hand, each COIN class has some 

special rules that is satisfies unlike the other classes. For example:   

- Syntax COINs: "Definition" rule is one of the predominant rules of this COIN class compared to the 

other classes. 

- Structure COINs: “Structure” rule is the mainly satisfied rule. 

- Semantic COINs: This class has a balanced distribution between three main rules (Goal, Condi-

tional, and Explanation/Example). 

- Quality COINs: As we have a few instances of this class (i.e., 28 sentences only), we could not de-

termine the exact features or rules for this COIN class. 

- Not-COIN: This class mostly satisfies the “Technical term” and the “Conditional” rules. It also sat-

isfies the “Goal” rule to some extent.  

- Dynamic COINs: There are many instances of this class that satisfies the “Conditional” sentence 

rule, “Resource” terms, and “Action verb” rules. 

- Context COINs: This COIN class is similar to the Quality COIN class in terms of the few number 

of instances. Hence, we do not have enough data (i.e., 13 sentences only) to decide on the rules it 

satisfies more frequently. For this limited instances we noticed they satisfy the “Conditional” rule. 

Phase 2: Selecting ML classification algorithms. Based on our literature review and deep investigating for 

the different existing ML algorithms that are specifically used for text classification, we found that Naïve 

Bayes (NB) [25],  and Support Vector Machine (SVM) [26] are the most effective and recommended ones 
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[53] [54] [55]. Nevertheless, our curiosity made us decide to try the different versions of Naïve Bayes (i.e., 

Complement Naïve Bayes [56], Naïve Bayes Multinomial updatable [57], Naïve Bayes Multinomial [58], Na-

ïve Bayes Updatable [59]). In addition, we included other algorithms like Decision Tree (J48) [60], Random 

Forest Tree [61], Simple Logistic [62], Logistic Regression [63], and K-Nearest Neighbor (KNN) [64].  

Phase 3: Configuring and running tests for the ML classification algorithms. Having the classification 

algorithms selected, we trained the ML classification model using the matrix that we produced in phase 1. The 

test was run on the two versions of our COIN Corpus (i.e., the Seven-COIN Corpus and Two-COIN Corpus).  

For the activities in this phase, we used Weka 3.7.13 7 to train and test the classification models. 

1- Seven-COIN classification experiment run. 

 In this experiment run, we trained the classification model using the rules’ matrix that resulted from 

phase 1. Then we ran the selected above mentioned text classification algorithms. 

2- Two-COIN classification experiment run. 

Similarly, in this experiment run, we trained the classification model using the rules’ matrix that re-

sulted from phase 1. Then we ran the selected above mentioned text classification algorithms. 

Generally, for each test run, the corpus was divided into a training and testing sets. The training set we used 

for teaching the classification model about the rules, while we used the testing set for determining the model’s 

classification accuracy. In specific, we used the k-fold cross-validation [65] [66], in which the data set in our 

corpus is divided into k subsets. Then, (k-1) subsets of the data set are used for training and one subsets used 

for testing. As we used k = 10 for 10 rounds, then we got in each round 9 subsets are used for training the 

classification model and only one subset is used for testing. Finally, we computed the average of the 10 runs. 

Phase 4: Evaluating the experimental results. Next, we briefly introduce the metrics we used in evaluat-

ing our experimental results to evaluate the results. Then, we use them in interpreting the results in details. 

Evaluation Metrics 

Recall, Precision and F-Measure are the most commonly used metrics for evaluating the accuracy of text 

classification models [67]. Hence, we used these metrics, which we explain below, for evaluating the results 

of all our tested ML classification algorithms. 

Recall (R) is the ratio of the records that are correctly predicted to the total number of relevant records in 

the data set. Recall is a fractional number between 0 and 1 and usually expressed as a percentage [68] and is 

calculated using the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

# 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
=  

#𝑇𝑃

#𝑇𝑃 + # 𝐹𝑁
        (2) 

 

Precision (P) is a ratio of the documents that are correctly predicted to the total number of relative and 

irrelative records that are retrieved from the data set [68]. Precision is a fractional number between 0 and 1 

and expressed as a percentage and is calculated using the following formula [68]:  

                                                           
7 Weka is a collection of machine learning algorithms for data mining tasks. http://www.cs.waikato.ac.nz/ml/weka/ 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

# 𝑜𝑓 (𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 + 𝑖𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
=  

#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
      (3) 

 

F-Measure (F) is a combination of recall and precision. F-Measure is a popular evaluation metric for im-

balance problem, in which the data set are not classified equally (e.g., some of the classes are more than the 

others) [69] [70]. F-Measure is calculated using the following formula: 

 

𝐹 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
          (4) 

Results and Evaluation 

As mentioned earlier, we performed the experiment on two versions of the corpus, first one on the Seven-

COIN Corpus, and the next on the Two-COIN Corpus.  

With regards to the Seven-COIN classification results, we found that the best F-Measure was achieved by 

Logistic Regression, Recall of 47.0%, Precision of 57.7% and F-Measure of 47.6% (See Table 17).  

Table 17. Model performance for classifying Seven-COIN 

Classification Algorithm Recall Precision F-Measure 

Logistic Regression 47.0% 51.7% 47.6% 

Naïve Bayes 50.2% 45.8% 46.5% 

J48 49.8% 46.1% 46.5% 

Complement  Naive Bayes  45.6% 49.2% 46.4% 

Neural Network 49.2% 45.8% 46.2% 

Random Forest Tree 47.1% 44.4% 45.0% 

KNN, k=18 49.6% 46.7% 43.7% 

Support Vector Machine  49.6% 43.9% 43.7% 

 

 

Similarly, we found that the best results of the Two-COIN classification was achieved by Logistic Regression, 

Recall of 66.5%, Precision of 66.1% and F-Measure of 65.7%  (See Table 18). 

Table 18. Model performance for classifying Two-COIN 

Classification Algorithm Recall Precision F-Measure 

Logistic Regression 66.5% 66.1% 65.7% 

Naïve Bayes 66.0% 65.5% 65.3% 

Complement  Naive Bayes  64.3% 64.8% 64.5% 

J48 64.5% 64.0% 63.9% 

Neural Network 63.4% 62.7% 62.4% 

KNN, k=18 62.3% 61.9% 62.0% 

Random Forest Tree 62.2% 61.9% 62.0% 

Support Vector Machine  64.0% 65.6% 59.1% 
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Conclusion on rule-based classification 

According to the results we obtained from these experiments, we conclude that: 

- The accuracy of the first model (i.e., Seven-COIN classification) gave a maximum accuracy F-

measure of 47.6%, which is obtained by applying the logistic regression algorithm.  

- On the other hand, the second model (i.e., Two-COIN classification) gave a little bit improved ac-

curacy with F-measure of 65.3%, which is achieved using a Naïve Bayes algorithm.   

To the best of our knowledge, these results can be improved if we have a larger data set (i.e., more manu-

ally classified sentences in the corpus). That is, our contributed corpus has a small size (less than 3K of 

COIN sentences). Still, we believe that these achieved results are promising and this encourages us to inves-

tigate different strategies to optimize the results by using other possible text classification algorithms. 
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6.2 Second Approach: Bag-of-Words-based Machine Learning Classification  
 

In this section, we explore another approach for automating the extraction of COINs from textual content 

of API documentation by using ML classifiers along with the Bag-of-Words (BOWs) model [32]. 

As we saw in the previous section, Rule-based ML classification using our manually identified rules did 

not provide high accuracy results. Hence, we expanded and intensified our efforts toward exploring other text 

classification strategies. By reviewing further research papers in machine learning and text classification meth-

ods, we found that there is a representation model for the data that could show better effectiveness and effi-

ciency in classifying natural language text called Bag-of-Words. In BOWs model, each sentence is represented 

as a collection of words after tokenizing it using natural language processing techniques. For example, a sen-

tence like “This is a model” is represented as {‘This’, ‘is’, ‘a’, ‘model’}. Thus, each word represents an inde-

pendent feature. The co-occurrence of words is weighted using a model called TF-IDF (i.e., Term frequency 

–Inverse Document Frequency) [33] that we will explain in more details later in this chapter. 

Accordingly, we decided to adopt the BOWs modeling in our research to see its potentials in classifying 

the sentences of API documents into the COIN classes. This required us to follow the process as shown in Fig. 

20, which we have published in a paper related to the thesis work [2]. In next sections, we describe the details 

for each step of this process. 

 

 

Fig. 20.  'Process Flow' of our model [2] 

 

Data preparation  

In this stage, we prepare the data set (i.e., the sentences in the Seven-COIN Corpus) by transforming the 

format and cleaning the content that we describe next.  

Format transformation. We transformed the format of the sentences in the corpus from CSV (i.e. Comma 

Separated Values) to ARFF (i.e. Attribute-Relation File Format8).  

Content cleaning. For performance consideration of the classifier, some sentences needed cleaning to re-

move the technical noise that existed in the non-natural language text (e.g., http links, resources and path, 

service location, variable definitions, or functions call). Such technical noise exists frequently in API docu-

ments text to explain the technical usage of the offered APIs. Therefore, we developed some text manipulation 

techniques to reduce the technical noise as the following: 

                                                           
8  ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attrib-

utes. URL:https://weka.wikispaces.com/ARFF+(stable+version) 
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- Hyperlinks: basically, we defined a regular expression to replace all hyperlinks that might exist in the text 

with a constant term (i.e., ‘Hyperlink’). That is, the whole textual content is checked to find if it has any 

hyperlink to replace it with this constant using the following regular expression that we defined: 

(https?:\/\/)?(www\.)?(ftp\:\/\/)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,256}\b([-a-zA-Z0-

9@:%_\+.~#?&//=]*)+[^\( | ^\)] 

The above regular expression is used to detect hyperlinks like: 

https://www.facebook.com, http://yahoo.com, www.google.com, http://speedtest.tele2.net . 

-  Resources’ path: API documents might contain some paths that point to particular resources, locations, online 

data, or further information regarding the usage of the API. Such technical noise is very similar to the hyperlink 

noise. In order to manipulate this noise, we also developed another simple regular expression as the following: 

\w*(((\/)|(\\))+(.*))+ 

The above regular expression is used to detect hyperlinks like: 

file/document/ , /location/windows/abc , \server\pc\ , \\file\\system. 

- Variables: Any expression of words in the form of X_Y or _X can be considered as variable and here we 

replace it with a constant term “VARIABLE”. For that, we developed the following regular expression: 

\w+_\w+  and \s\w+\/\w+\s   

As an example: "if neither time specified, departure_time defaults now (that is, departure time defaults 

current time)." After replacement by our regular expression, it looks like  " if neither time specified, VARIABLE 

defaults now (that is, departure time defaults current time)." 

- Function Call: In some sentences, there are a piece of code used as examples to explain how the function 

or method works, this code contain a function call. Hence, we developed a simple regular expression to capture 

this pattern as the following:  

 \w*\.*\w+\(\w*\) 

Example: set( ), get( ), add(a,b), print(x). 

  

https://www.facebook.com/
http://yahoo.com/
http://www.google.com/
http://speedtest.tele2.net/
file://///file/system
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Perquisites input for our ML classification model.  

In our study, we observed that the conceptual constraints are the non-technical information that their main 

concern is not “how” to implement, configure, or deploy the service or system.  

According to these observations in our experiments, we ignored some technical information from the anal-

ysis process. For example, we did not include pure code, and partially technical terms explanation in some 

section. Especially in development pages, examples and technical help which in general, they have non-repre-

sentative information about concepts, same as the (mixed-code with technical terms), or non-meaningless sen-

tences (basically: our model is not customized for grammar/spelling checking). Thus, we assume that the 

grammar of the document’s content should be well formed with the right spelling. Therefore, textual input to 

our model should be correct, complete, and meaningful sentence(s). 

In addition, we also exclude headers, paragraph titles, footers, image/figure description, and table descrip-

tion, which mostly do not help to detect any useful information about the system/service concept. In addition, 

we did not include “text-as-link”, and some sentences that contain one or more function(s)/variable(s)/param-

eter(s)/link(s) or/and sentence that contains many non-natural language (NL) terms. As an exception, in some 

cases we included some sentences, which contain non-NL, like functions/parameters/etc., sentences that have 

technical keywords, etc., only if the context is about a concept or non-technical constraints.  

On the other hand, we excluded sentences from the SDK documentation part of the API documentation. 

This due to our awareness of the technical dominance in this part of the API documents, which we observed 

and concluded through the manual analysis, processing, and classification of sentences in out multiple-case 

study. Beside, our prior knowledge, excluding this technical part allows better learning for the ML classifiers 

and consequently better classification results later.  

 

Exploratory Experiment   

In this section, we conduct two different experiments, one for Seven-COIN classes and the second for the 

Two-COIN classes. These experiments are performed to measure the performance of the text classification 

algorithms in terms of accuracy.  

Phase1: Applying NLP Pipelines. 

The purpose of NLP Pipelines (processes/tasks)  is to select the most presentative features (keywords) by first 

cleaning corpus from noise (insignificant words like Stopwords, punctuation, etc.) and then grouping similar 

words into one form using stemming, in which the word will reduced to its root (e.g.   Recording  record, 

operation  operate, playing play, etc.). For more details, our Seven-COIN corpus contains 2283 COINs 

(sentences), these COINs consist of 41,287 words, which in average there are 18 words per one COIN (sen-

tence). Hence, we aim at representing each COIN with the most informative words and filtering out the less 

important words, thus NLP pipelines helps to perform such a task if we applied the previous tasks, then we 

will get only small number of features (keywords) compared with if select all words in the corpus. Then, by 

using TF-IDF (which is the last process performed on the resulting features from the previous processes above-

mentioned), then these features will be weighted according to its importance in the corpus. 
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The input is: the sentences in the corpus. 

This is to transform the textual data set into a mathematical representation that is the required form to be fed 

up to the classification model. More specifically, the input to this phase is the whole manipulated Seven-COIN 

corpus resulting from the previous data preparation. 

The output is: a weighted matrix of the weighted features. 

Note that our NLP pipe lines are performed completely using Weka v 3.7.11 19 as the following: 

- Word tokenizing: Once we obtained the sentence from the previous procedure (i.e., Sentence Tokenizing), 

we splitted each sentence into a subset of individual words. For example, the following sentence S1=”All 

images must reside in the Watch app bundle” will be represented as a subset of keywords such as S1’ = { ‘All’, 

’images’, ’must’, ‘reside’, ’in’, ’the’, ’Watch’ ,’app’ , ’bundle’}. 

- Lowering cases: A word can be written in two different forms, but still the same. For example, at the begin-

ning of the sentence, the first letter of the word is always in uppercase, while, in the middle of the sentence the 

same word would be written in lowercase. However, in machine learning technology, text classification algo-

rithms do not consider such cases as the same word. This affects the performance results of classifiers in a 

negative way. Thus, we normalize all words to be in one form (i.e., lowercase). As an example, the word ‘All’ 

is converted to ‘all’ and the word ‘The’ is converted also to ‘the’. Therefore, in this phase, we converted the 

all the words in Seven-COIN Corpus into the lowercase form.  

- Stopwords Eliminating: Stopwords refer to the commonly used words that are considered as a conjunctive 

words, prepositions, adverbs, or pronouns. In our work, we adapted the default English Stopwords list, which 

is a list of English words are used in Weka. Hence, we adapted this list after we performed some experiments. 

The experiments were conducted many times by training a classification model on the data set of the Seven-

COIN corpus, each time we used different Stopwords, until we got a best accuracy. For example, we found 

that some words like ‘if’, ’then’, ‘while’, ’when’ and modal verbs: ‘could’, ‘can’, ‘would’, ‘will’, ‘shall’, 

‘should’, ‘may’, and ‘might’ should not be considered as Stopwords because it can change the accuracy of the 

classification model based on our observation during the experiments we conducted. The reason behind this is 

that, these words are used so frequently in the sentences within our Seven-COIN corpus especially for the 

following COIN classes: dynamic, semantic, and Not-COIN. Hence, if we exclude these words, then it will 

decrease the accuracy of the classification model. Thus, we defined a special Stopwords list for our model that 

does not include the modal verbs and some temporal conjunction, see Appendix (Table 37. Defined Stopwords)  

- Words stemming: One useful and important NLP technique is to stem a word into its root that is considered 

to be the primitive lexical unit of any similar words [71]. Hence, we applied the stemming to aggregate all 

similar forms of the words into one unified form. This process reduces the number of keywords that share a 

similar root. After reviewing the comparative study of Stemming Algorithms [72], we had tested the perfor-

mance of many stemming algorithms like Porter (Snowball) stemmer [73], Lovins stemmer [74]. Then, we 

decided to choose Snowball stemmer due its performance in terms of F-measure when used in classifying the 

COINs.   

                                                           
9 Weka: http://www.cs.waikato.ac.nz/ml/weka 
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It is worth to mention, that we conducted an experiment to compare between the effects of the stemming 

and the lemmatization processes [71]  on that accuracy of the classification algorithms (i.e., NB [25], SVM 

[26]  and Complement NB [56]). The experiment results showed that the stemming process was better than 

lemmatization in terms of the classification models accuracy in terms of f-measure as shown in Table 19.  

 

Table 19. Comparision between Stemming and Lemmatization in terms of F-Measure 

Process 
F-Measure 

NB SVM Complement NB 

Snowball Stemming  62.8%  59.0% 70.0% 

Lemmatization 60.7% 57.6% 66.5% 

 

 

- Feature extraction using N-Gram combination: At this phase, we aimed at extracting the features from the 

sentences in the Seven-COIN Corpus. At the beginning, we considered each single word in the sentence as a 

feature (Uni-Gram), but after performing a number of experiments, as we will show later, we decided to use 

N-Gram [35] where N is between 1 and 3. That is, we considered the features as each single word, each com-

bination of two consecutive words, and each combination of three consecutive words. Such technique enables 

us to preserve the words’ order and to keep the context of the sentence as well.  

Terms weighting: In this stage, the whole COINS corpus is transformed into a mathematical model that is a 

matrix. In this matrix, the header contains all the extracted features from the previous phase, while each row 

represents a sentence in the corpus. Thus, each cell [row, column] holds the weight of a feature in the sentence. 

For achieving the best weighting, we used Term Frequency-Inverse Document Frequency (TF-IDF) [33]. 

 

Evaluation Metrics 

We used the same metrics as the ones we used for the Rule-based classification experiment. That is we used 

in the first Approach: Rule-based Machine Learning Classification in the evaluation section as the follow-

ing:  

We used k-fold cross-validation, in which the data set in our corpus is divided into k subsets. Then, (k-1) 

subsets of the data set are used for training and one subsets used for testing. As we used k = 10 for 10 

rounds, then we got in each round 9 subsets are used for training the classification model and only one 

subset is used for testing. Finally, we computed the average of the 10 runs. 

Results and Evaluation.  

In this section, we present the results that we have obtained after we have conducted the experiment on two 

different types of corpus, Seven-COIN corpus and Two-COIN corpus by applying different classification al-

gorithms. And finally, we perform a statistical comparison between these results.  



Research part two: Automatic identification of COINs using ML and NLP 

 

61 

 

Classification accuracy achieved by the different ML Classifiers (Seven-COIN Corpus case): The re-

sults showed different values for different text classification algorithms. For classifying seven classes, we 

have achieved the best accuracy using 1,2,3-Gram with recall of 70.2%, precision of 72.4% and f-measure of 

70% by using ComplementNaïveBayes algorithm (see Table 20). While, in the second place comes Na-

ïveBayesMutinomialupdatable with accuracy recall of 65.1%, precision of 66% and f-measure of 65.4%. The 

rest of the results show accuracy f-measure between 62.8% and 52.3%. The worst results were obtained by 

Decision Tree J48 and KNN where (K=1, 2) algorithms. These results are better than our results which are 

obtained in our recent published paper [2] which reported f-measure of 62.2% using 1,2,3 Gram with NB 

algorithm.   

Table 20. Accuracy comparison between different classification algorithms  

Classification Algorithm 
1,2,3 Gram 

Precision Recall F-Measure 

ComplementNaïveBayes 
70.4% 70.2% 70.0% 

NaïveBayesMutinomialupdatable  
66.0% 65.1% 65.4% 

NaiveBayes 
64.3% 62.4% 62.8% 

NaivebayesMultinomial  
66.3% 59.5% 61.9% 

Support Vector Machine SVM 
59.3% 60.0% 59.0% 

NaïveBayesUpdatable   
55.3% 51.7% 52.5% 

Simple Logistic 
52.5% 54.4% 52.4% 

Random Forest Tree 
60.4% 56.3% 52.3% 

Decision Tree J48 
48.5% 49.6% 48.3% 

KNN  K=1 
54.8% 45.5% 40.8% 

KNN  K=2 
49.8% 36.1% 30.1% 

 

In Fig. 21, we can see clearly that, the accuracy of 1,2 Gram is very similar to 1,2,3 Gram with very small 

difference (i.e., F-measure improved from 68.4% to 70.0%).  
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Fig. 21. Text algorithms performance via N-Grams 

 

Table 21 shows the difference between these two variations in terms of F-measure. 

Table 21. Accuracy comparison by using all words and top 1500 words 

Algorithm 

1,2,3 Gram 

All words 1500 words 

Precision Recall F-Measure Precision Recall F-Measure 

ComplementNaïveBayes 
70.4% 70.2% 70.0% 67.8% 67.9% 67.7% 

NaïveBayesMutinomialupdatable  
66.0% 65.1% 65.4% 65.3% 65.2% 65.2% 

NaiveBayes 
64.3% 62.4% 62.8% 63.3% 62.0% 61.1% 

NaivebayesMultinomial  
66.3% 59.5% 61.9% 65.1% 61.1% 62.7% 

Support Vector Machine SVM 
59.3% 60.0% 59.0% 58.4% 59.0% 57.8% 

NaïveBayesUpdatable   
55.3% 51.7% 52.5% 55.1% 51.3% 52.2% 

Simple Logistic 
52.5% 54.4% 52.4% 53.1% 54.5% 52.3% 

Random Forest Tree 
60.4% 56.3% 52.3% 61.0% 53.5% 47.3% 

Decision Tree J48 
48.5% 49.6% 48.3% 48.5% 49.6% 48.3% 

KNN  K=1 
54.8% 45.5% 40.8% 55.0% 47.1% 41.5% 

KNN  K=2 
49.8% 36.1% 30.1% 51.6% 44.6% 31.3% 

 

It is clear, that the usage of all corpus words gives more accuracy than just using only top 1500 words. This 

is also shown in Fig. 22. In addition, using 1,2,3 Gram with all corpus words is not only better than the using 

the top 1500 words, but it is also better than using bi-gram or uni-gram. 
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Fig. 22. Comparison between using corpus size corresponding to different N-Grams 

For more precision, we conducted the experiment over the text classification algorithms and we observed 

that ComplementNaïveBayes achieves the best performance over all N-Gram combinations. See Fig. 23. 

 

 

Fig. 23. Performance of text classification algorithms via different N-Gram combinations 

Results improvement using linguistic knowledge 

In an attempt to enhance the accuracy results, we incorporated linguistic knowledge by using WordNet [75] 

as stated to have a positive effect [76] [77]. In this regard, we decided to use hypernym10, which employs the 

semantic relationship between similar words. For example, a set of words {‘Blue’,’Red’,’Green’} has a com-

mon hypernym called ‘Colour’; as explained in Fig. 24. Explanation of Hypernym   

                                                           
10 Hypernym is the name of a broader category of things [91]. For example, “colour” is hypernym of “red”. 
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Fig. 24. Explanation of Hypernym  11 

 Hence, we developed a python method to extract the hypernym of all words of type verb or noun from the 

WordNet as shown in Fig. 25. Then we replaced the word in our corpus with the corresponding hypernym 

word. In case there is no hypernym, then we return the same word.  

 

 

Fig. 25. An excerpt of the developed Python code to extract Hypernym using the WordNet 

Then we performed the experiment on the corpus using the same setting with the linguistic knowledge (i.e. 

WordNet) and we achieved a less accuracy f-measure of 63.8% compared with 70.0% using ComplementNa-

ïveBayes algorithm as shown in Table 22. F-Measure of using the WordNet with respect to non-using of 

WordNet 

It is worth mentioning that, we used hypernym method, to the best of our knowledge this method is one of 

the proposed methods besides other widely used methods like (synonyms, antonym) . In our case, the experi-

ments took 11 hours, from 10:00 PM to 09:00 AM to extract all hypernym of words in our corpus, which is 

too much consuming time. Note that, the processor we ran the experiment on is Intel core i5 460 M with 2.5 

GHZ. 

  

                                                           
11 Adapted from http://ohmyluna.blogspot.de/2011/01/hypernym-and-hyponym.html 

 

1 def getHypernym(word,pos_type):  

2       if(pos_type=='noun'  and len(word)>=2  

3          and len( wordnet.synsets(word, pos=NOUN))>0): 

4            if(wordnet.synsets(word, pos=NOUN)[0].hypernym !=None) : 

5                return (wordnet.synsets(word, pos=NOUN)[0].hypernym[0])  

6                           

7       elif(pos_type=='verb' and len(word)>=2  

8      and len( wordnet.synsets(word, pos=VERB))>0): 

9            if(wordnet.synsets(word, pos=VERB)[0].hypernym !=None) : 

10               return   (wordnet.synsets(word, pos=VERB)[0].hypernym[0]) 

11 

12          return word            

13 

14     else: 

15        return word 



Research part two: Automatic identification of COINs using ML and NLP 

 

65 

 

 

Table 22. F-Measure of using the WordNet with respect to non-using of WordNet 

 
F-measure 

 

NB SVM Complement NB 

Without WordNet 62.80% 59.0% 70.0% 

Using WordNet 57.90% 55.1% 63.8% 

 

 

Classification accuracy achieved by the different ML Classifiers (Two-COIN Corpus case): As we men-

tioned earlier, the Two-COIN Corpus is derived from the Seven-COIN Corpus by abstracting into ‘COIN’ and 

‘Not-COIN. Therefore, we ran a second round of the experiment where we repeated the same steps as ex-

plained in the first round with the Seven-COIN Corpus. 

We tested the performance of our model using ten classification algorithms as shown Table 23 and Fig. 26. 

Table 23. Accuracy comparison between different classification algorithms 

Classification Algorithm 

1,2,3 Gram 

all words 

Precision Recall F-Measure 

ComplementNaïveBayes  
81.9% 82.0% 81.9% 

NaïveBayesMutinomialupdatable 
81.9% 82.0% 81.8% 

NaïveBayesUpdatable   
70.5% 70.8% 70.5% 

NaiveBayes 
76.7% 74.5% 74.6% 

NaivebayesMultinomial  
81.8% 81.9% 81.8% 

Support Vector Machine (SVM) 
75.7% 75.7% 75.7% 

Decision Tree J48 
65.0% 65.2% 65.1% 

Random Forest Tree 
73.7% 73.9% 73.7% 

KNN  K=1 
64.2% 52.3% 47.8% 

KNN  K=2 
64.4% 48.7% 40.6% 

Simple Logistic 
68.2% 68.4% 67.2% 

Logistic 
67.1% 67.5% 66.5% 

 



Research part two: Automatic identification of COINs using ML and NLP 

 

66 

 

 

Fig. 26. Accuracy comparison between different classification algorithms 

 

Next, we performed the experiment by applying the classification algorithms on different combination of 

N-Gram. As expected, the result was similar to the Seven-COIN round. The results revealed an improvement 

in the accuracy compared to the Seven-COIN classification. That is, we have achieved the best accuracy using 

1,2,3-Gram with recall of 82.0%, precision of 81.9% and f-measure of 81.9% by using ComplementNa-

ïveBayes algorithm. In the second place came the NaïveBayesMutinomialupdatable with accuracy recall of 

82.0%, precision of 81.9 % and f-measure of 81.8%. These results are much better than what we reported in 

our published paper [2], in which we got accuracy of f-measure 76.0% using 1,2,3 Gram with NB algorithm. 

Besides, we compared the performance of the learning algorithms of our model with respect to different com-

bination of N-Gram. The results are shown in Fig. 27 and Fig. 28 respectively.    

 

Fig. 27. Algorithms performance via N-Gram 
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Fig. 28. Classification performance  via different N-Gram combinations in Two-COIN corpus 

Finally, we observed that, if we limited the classification classes to COIN and Not-COIN, then the f-meas-

ure score increases to reach 81.8% instead of 70.0%. Our results are recorded in Table 24 and illustrated in 

Fig. 29. 

Table 24. Accuracy comparision between two different corpora 

COINs Type 

NaïveBayesMutinomialupdatable 
(1) 

ComplementNaïveBayes 
(2) 

F-Measure F-Measure 

Seven-Classes 65.4% 70.0% 

Two-Classes 81.8% 81.9% 

 

 

Fig. 29. Accuracy comparision between two different corpora 
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7 TECHNICAL SUPPORT (A TOOL PROTOTYPE)  

To bring our ideas into industry and make it practical, we designed a simple plugin tool so software archi-

tects or analysts can benefit from our ML classification ideas and achievements effectively. The tool aim sat 

making it easy for architects to shape a general perception, which helps them in extracting the conceptual 

interoperability constraint from API documents automatically. We built a prototype for the tool using web 

service technologies. Through the tool, the architect selects any piece of text, and requests the COIN type that 

the sentence could have just in one simple step. Such a service offered by the tool is very easy to use by an 

architect in terms of usability, and accessibility. It also reduces the needed time and effort to analyze large 

textual content searching for the COINs. 

We implemented our tool prototype as a simple plugin for the Chrome web browser and we call it the CEP-

COIN (an abbreviation for Classifier Ensemble Plugin–COIN). We use the Java and JavaScript languages for 

the implementation and we designed the tool with both front-end side and a back-end. Shortly, the front-end 

side is the user interface (UI), while the back-end one is the core unit of our CEP-COIN. 

Principle of work 

A client uses CEP-COIN plugin from a web browser to send a piece of text from an API document through 

an http request to the web server, which hosts and runs the web service. We call this service ‘COIN Classifying 

Service’. Given a sentence, the web service predicts the COIN type by using the machine learning classifica-

tion model that we introduced in section 6.2. Then, this web service responds to the client request by sending 

back the result (i.e., the COIN class that the sentence has). A simple overview of the described process flow is 

shown in Fig. 30 

 

Fig. 30. Process Flow of the CEP-COIN    
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Using the CEP-COIN Tool 

 In this section, we explain how software architect can install the tool prototype and how to use its func-

tionalities that are easy to follow. 

CEP-COIN Installation. CEP-COIN prototype tool is very easy to install as Add-In for Chrome (we have 

tested it Chrome version 49”). The software architect can import this tool from Chrome settings through the 

extension menu. From this menu the architect would load the unpacked extension then select the folder of 

the CEP-COIN as shown in Fig. 31 

 

Fig. 31. Installing CEP-COIN Tool 

Using CEP-COIN functionalities. The CEP-COIN service is offered in three different forms: 

1. Using CEP-COIN Context Menu. 

2. Using CEP-COIN Plugin GUI. 

3. Using CEP-COIN Web Page. 

1. Using CEP-COIN Context Menu: Once the CEP-COIN plugin is installed, you can select any text on the 

webpage of an API document, then right click on the mouse and select COIN Classification. Immediately, 

a popup window will appear with a COIN-Type as shown in Fig. 32. This context menu is very friendly if 

the user want to classify any text by selection, but if he want to write his own text to classify, then he should 

use another functionality of CEP-COIN plugin as it is explained next. 

 

Fig. 32. Using CEP-COIN Tool from context menu 
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2. Using CEP-COIN Plugin GUI: In this case, the software architect can enter any sentence without leaving 

the webpage of the API document. The GUI of this form has a very simple interface. With this GUI, the 

software architect can write any text and by pressing the button “Get COIN Class” then he can get the 

corresponding COINs class in the result field as shown in Fig. 33. 

 

Fig. 33. Using CEP-COIN from Plugin GUI 

3. Using CEP-COIN Web Page: We developed a simple JSP page, which takes a textual sentence as an 

input and returns the COIN type as an output. This service differs from the previous menu services in terms 

of enabling the software architect to write any sentence without need to install the CEP-COIN. In addition, 

he can use this web page from any web browser. See Fig. 34. 

 

Fig. 34. Using CEP-COIN service from the JSP page 
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CEP-COIN Architecture 

The Architecture of our CEP-COIN tool consists of two separated components as illustrated in Fig. 35 

1- Front-End component: developed using JavaScript.  

This component consist of one layer, which is a User Interface (UI) layer to provide a graphical user inter-

action (i.e., GUI). The software architect sends an http request from the browser via CEP-COIN tool. The tool 

communicates with the server side directly using Ajax. Then, CEP-COIN passes the result back to the browser 

using JavaScript & JQuery.  

2- Back-End component: developed using Java. 

There are three different layers. First layer is a business layer, which is responsible for finding the service 

location. Then, it requests the service from a web services, and passing the sentence to the classification ser-

vice, which in turn sends a Simple Object Access Protocol (SOAP) [78], Description Language (WSDL) [79] 

[80] file that contains: 

1- The abstract service interface definition. 

2- How to interact with service. 

3- The location of the service. 

 The second layer is the data access layer, which is responsible for creating an instance from the classifica-

tion model and for applying the text classification algorithm to find out the corresponding COIN class for 

the sent sentence. 
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Fig. 35. Architecture of the CEP-COIN 

CEP-COIN Implementation  

We created two independent implementation parts: one for the client component (i.e., the representation 

layer) using Ajax code to request our web service, and the second for the server component (which responds 

to the client request and retrieves the COINs class using Java language. Next, we explain this implementation 

part in more details. 

Client Component (Front-end) implementation. In Fig. 36, we show an excerpt of the JavaScript12 and 

JQuery13 code for requesting the COIN classification from server side. And this implementation is used in all 

of the three forms of the client services (Context Menu, Plugin-GUI and Web form) as stated above. 

                                                           
12 https://www.w3.org/community/webed/wiki/What_can_you_do_with_JavaScript 
13 https://jquery.com/ 
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The implementation defines a simple http request using post command. Hence, the command requires the 

web service URL and retrieves the COIN type. Then, it writes back the result immediately on the webpage od 

the browser document. 

Server Side (Back-end) implementation. Here we depict the three main processes that are running on the 

server side of our tool. Note that we used GlassFish Server 4.1.114 for deploying and running the CEP-COIN 

web service. 

The core functionalities of our server side are performed in the business logic layer. There are three essential 

processes to retrieve the COIN type. These three processes are (load ML model, classify, and response to client 

request) these processes are shown in Fig. 37 

 

These processes are implemented completely in pure Java. We used NetBeans 8.1 as an IDE and Java EE 

15 with JDK 1.8 16 for developing the server side code. For loading ML libraries and algorithms, we used Weka 

API [81]. The reason to use Java API and Weka API. Therefore, all Weka resources and packages are totally 

Java callable, reliable, stable and compatible. 

                                                           
14 https://glassfish.java.net/ 
15 http://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html 
16 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 

 

1 function getTheCOINType [2]() 

2 {  

3  var sentence=getParameterByName('textCOIN');   

4  var posting = 

5  $.post("localhost:8080/WebApplication2/faces/action.jsp", 

6   {textCOIN: sentence}); 

7    posting.done(function (data) {      

8    document.write(data.trim()); } 

9     });    

10} 

Fig. 36. JQuery for requesting the Classification Service 

Classify 

Response 
COIN type 

<Output> 

COINS Type 
Load ML 

Model 
ML Model 

requested 

sentence 

<Input> 

Fig. 37. Server Side Processes Flow 
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We implemented a method called loadModel to load the ML  model from the server drive into the server 

memory using Java API. In Fig. 38 we show the complete implementation of this method. 

 

 

The Object ObjectInputStream holds the model into the memory. Then, we defined a Weka API object 

classifier of type FilteredClassifier. This object is responsible for the classification process, which holds the 

ML algorithm that s used in the training phase towards finding out the appropriate COIN type. 

 

  

 

1  public void loadModel(String ModelfileName) { 

2    try { 

3    FileInputStream FS=new FileInputStream(ModelfileName); 

4      ObjectInputStream inModel = new ObjectInputStream(FS); 

5            Object ClassifierObject = inModel.readObject(); 

6      classifier = (FilteredClassifier) ClassifierObject; 

7            inModel.close(); 

8      System.out.println("Loaded model: " + ModelfileName ); 

9           }  

10  catch (Exception ex)  

11  { 

12     System.out.println("Problem:" + ModelfileName ); 

13  } 

14 } 

 

Fig. 38. loadModel method implementation 
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Tool Performance 

We evaluated the tool performance in terms of time spent to classify textual sentences. This evaluating was 

performed by classifying 10 sentences with average of 20 words per a sentence. The average time required to 

classify each sentence is 1.0 second. Remember that the tool effectiveness in classifying the sentences in iden-

tical to our described achievements in section 6.2  (i.e., recall =70.2%, precision =70.4% and f-measure 

=70.0%). We have tested our tool prototype on the platform configuration shown in Table 25 

Table 25. Platform Cofiguration 

 CPU 

RAM Bus Speed  
Brand Speed 

 

Server configuration Intel Xeon E5 2.2 GHZ EDO 3.5 GB 200 MHZ 

Client configuration Intel core i5 460 M 2.5 GHZ DDR3 4GB 133 MHZ 

 

Future work and development 

Since our tool is currently implemented as a prototype, it is designed only to operationalize our contributed 

ML classification model to show its applicability. That is, we just pointed out the potential practical advantages 

that our automatic classification ideas would bring to software architects and analysts in retrieve the required 

COINs from verbose of text in API documentation.  

For research time restrictions, we limited our plugin implementation to work only on one example of web 

browsers (we chose Chrome because of its popularity). In future, we are planning to develop CEP-COIN tool 

to work on other web browsers like Internet Explorer (IE), Firefox. On the other hand, we aim at extending 

the capabilities of our CEP-COIN tool to classify multiple sentences or even a complete document at once 

instead of classifying just a single sentence at once. In this case, CEP-COIN returns a list of COINs instead of 

single COINs as in our current version.  

Additionally, We also intend  to benefit from users feedback on the automatic classification results of the 

new sentences they send to the tool (e.g., to offer an optional report for their agreement on the provided 

classification or their disagreement and suggested classification). Keeping record of such data could be used 

to enrich our corpus content, and consequently we could use them in improving our classification model 

accuracy through continuous learnning. 

Moreover, we will support CEP-COIN tool with extra features like reusability. The idea of that is by 

tracking  the users’ recorded data in our DB system to provide them with reports of the classified documents. 

These reports can be formalized in different formats like (excel, xml, text, doc, etc.) to be incorporated in 

different analysis systems in order to save time and efforts by reusing it.  

Furthermore, we are planning to support the architects and software engineers with different types of 

statistics and recommendations about the conceptual interoperability constraints that their analyzed document 
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have. For example, the CEP-COIN can return statatistics about sentences and their COINs type distribution 

for a complete document.  

  



Research Challenges 

 

77 

 

8 RESEARCH CHALLENGES 

Despite many of the challenges that we encountered, we learned something new and gained more skills and 

experiences. Due to the clear goal and research plan, we continued our work and confront these difficulties in 

various ways until we overcame many of them.  

Along our researching which we were exploring the capabilities of using the NLP and ML technologies to 

automate the extraction of the COINs from API documents we faced many challenges that we describe bellow 

along with our solutions as well. 

8.1 Lack of labeled data 

For using ML classification techniques, we needed a ground truth, which must include as much as possible 

of already classified or labeled textual sentences from API documentations according to the COIN model. As 

such, requirement did not exist; we had to build it by ourselves at the beginning of our research. This manual 

task was very tedious and time consuming as we analyzed and classified each sentence from the API docu-

ments we selected (see chapter 4). In this task, we encountered the following three sub-challenges: 

1. Selecting representative API documentation cases.  

The first obstacle we faced in our research was selecting the API documentation that meet our research 

requirements (i.e., API documents that contain conceptual information and not only technical ones, and that 

are diversified and widely used). This required us to define appropriate selection criteria that directs our search 

and nomination for included documents in our research (see the research methodology chapter for details).  

2. Extracting relevant content from the selected API documentations 

 After we finished reading the selected API documentations, we faced an obstacle of content representation, 

in which we found the conceptual information was not pure, but rather it contained technical noise (e.g., sen-

tences contain natural language text along with code, symbols, tags, etc.). This noise was unwanted as it was 

irrelevant to our interest in the conceptual information only. Not only such a mix confuses the machine, but 

also worse, it gives the human reader hard times to interpret the text. For our work, it was necessary to clean 

and organize the textual content to facilitate the pattern recognition and keyword extraction for both ap-

proaches we described at section (6.1 and 6.2).  In order to perform that, we first implemented a simple PHP 

code using Simple HTML DOM Parser library to filter out the API documentation from noise. (i.e., headers, 

images, etc.). However, we found that, these tools were not sufficient and they were poor to meet the required 

purpose. For example, the available tools are not able to filter out the code-content, which is so frequent in 

many parts of the API documentation. These tools also do not support sentence tokenization into separated 

lines. Therefore, we decided to extend our manual efforts along with these tools to clean the content. Although 

this manual cleaning resulted in absolutely better content, it consumed too much time and mental effort to 

check sentence by sentence and word by word. 
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3. Sentences with poor description. 

Classifying the sentences of the textual content in the API documents required linguistic skill in to under-

stand the sentence meaning and classify according to the seven COIN classes. We needed to identify the mes-

sage delivered by each sentence, which sometimes was not trivial due to multiple messages in one sentence. 

That is, some sentences had more than one COIN class within it. In addition, the document had some grammar 

mistakes and ambiguous words that made it harder to interpret sentences. Actually, it was a challenging task 

especially at the beginning of the research.  

However, we got over this obstacle by training and practicing on the included cases and by the reviewing and 

discussing session that we had as described in chapter 5 section 4. 

4. Aggregating the collected data from across the cases.  

Another challenge that we faced was to aggregate and organize the collected data from the distinctive cases 

each with its own style. It was not trivial to put such incoherent data with different formats and structures. This 

task required additional time and many attempts to figure out a suitable procedure to gather them into one data 

container. The result of our effort produced one consistent database accommodating clean and organized sen-

tences for later usage within automatic ML classifiers. 

8.2 Identifying cross-case COINs identification rules.  

One of the most challenging phases of our research was to come up with a set of effective extraction rules 

and features to be fed up to the machine learning algorithms in our first classification approach (i.e., rule-based 

classification). It was a tedious manual investigation that consumed a lot of our research time that took ap-

proximately 35% of our effort. In particular, it was not a trivial task to identify the representative features for 

each COIN class from the sentences, which contained instances of the class manually. That is, for each phrase 

independently, we looked after the patterns no matter how diverse they are, then, we selected only the appro-

priate ones and neglected the insignificant ones in terms of number of occurrences. We tried different NLP 

techniques (i.e., word tokenizing, stemming, Stopwords elimination, N-Gram) as aids for us to overcome these 

obstacles and get better results. 

8.3 Understanding the semantics and contexts.  

This is considered to be the most troublesome among the issues that faces the researchers in the artificial 

intelligence area. Thus, we spent part of our research time reading related papers and scientific article regarding 

this issue, and we tried different approaches to maintain this problem. Finally, we settled on using N-Gram 

techniques and WordNet [75] to cover meaning and context issue. For example if we consider two consecutive 

words together by using N-Gram with N=2, then this helps us to preserve the word in a context, for example: 

two words like “perform jobs”, “user name” allows the classification model to recognize the context of these 

two words together instead of using a single word as a feature. This also was shown in our experiment, where 

the prediction accuracy is better when we use N-Gram with N between 1 and 3.  
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8.4 Limitation of resources.  

Working with text processing technologies has a very high consumption of resources (i.e., memory and 

CPU speed). In our experiments, there are two main phases require high-performance and hardware resources. 

First phase (Rule-based classification) and the second phase (BOWs-based classification, in which we ex-

tracted the features by applying NLP-Pipeline. As mentioned previously, our corpus size is 2283 COINs, 

hence, the process of extracting features requires high hardware resources. In particular, this required a big 

size of memory to accommodate the representation of the mathematical model resulting from this process. In 

fact, it was a very difficult situation, almost ending with memory overflow after performing many experiments. 

Then we restart again Weka many times to perform the experiment from scratch. To overcome this problem, 

we recorded the results of the experiment after each classification process manually to assure that at least we 

have the measures of the last experiments. And we faced the same problem in the second phase (BOWs). 

Finally, we have solved this problem partially by configuring   RunWeka.ini  and then set parameter (maxheap 

= 10024M instead of 1024M), then it works longer time than before but then again it shut down after some 

period of time. 

In fact, the consumption of resources is a common problem in machine learning and is expected to occur 

frequently. Although, it was not easy to run the experiments with such resource limitations, we did not have 

other alternatives.
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9 OVERALL DISCUSSION AND CONCLUSION 

The main goal in this thesis is to support software analyst and architect in identifying the conceptual in-

teroperability constraints, COINs, automatically in the text of API documents. In our research, we followed a 

systematic empirical-based methodology that has two main advantages: (1) tracing and verifying documented 

results among two research phases, and (2) repeating the defined activities in our protocol by other researchers 

in order to address researcher bias threat to validity.  To achieve our research goals, we explored the potentials 

of using ML and NLP, built a classification model, and conducted explorative experiments. Here we offer a 

summarized answer for our two main research questions: 

RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the 

NL text of API documentation? 

Answer: Through our observation during the classification process, we found some patterns. For instance, the 

sentences of type Not-COIN (which represent about 34.3% of the total COINs in the corpus) contain signifi-

cantly many technical keywords, and they include a text explaining technical and practical details about ser-

vices/systems.  For COINs of type dynamic (which comprise about 28.3%), have some specific patterns. For 

example, we found that, they include a description of the activity or the flow of operations. Additionally, they 

contain many conditional sentences such as (IF/Then) sentences that are used to clarify the expected results of 

the specific input. For COINs of type semantic (which constitute approximately 27.4%), have some distinctive 

patterns. For example, the sentences describe the purpose or goal of the service or activity. On the other hand, 

there are more than 48% of the semantic COINs that contain special terms. Thus, we classified them into three 

lists: 1) Output/Input verbs.  2) Supporting verbs. 3) Admission verbs. As shown in Appendix (Table 34, 

Table 35 and Table 36). 

We have also achieved additional related findings in this matter that we formulate in the following questions 

and answers: 

Question A:  Where could we find the COINs in the API documents, (i.e., in which sections or paragraphs)? 

Answer: To the best of our knowledge and according to our reviews of the API documents, we conclude that, 

the COINs fundamentally exist in specific paragraphs such as abstract - Introduction - Overview - Conclu-

sion – Summary. In light of the fact that these paragraphs are rich within concepts and abstract level of 

knowledge that are needed for analysts and architects to cover within their conceptual interoperability analy-

sis. However, COINs rarely exist in the paragraphs or sections that describe technical information such as 

method description and code examples.  

Question B: To which extent are API documents similar in terms of structure and format? 

Answer: We have noticed that there are differences in the composition of the API documentation. For in-

stance, some of these documents are subject to the special format and structure. Thus, we found that some 

API documents such as GoogleMaps is technical oriented and serves developers rather than software archi-
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tects. Therefore, mining COINs in these type of documents would be tough. While other documents like Ap-

pleWatch, SoundCloud and Eclipse serve developers and architects as they have an organized structure and 

format of the information with proper balance between concepts and technicalities.  

Regarding to the second defined research question for our research; we summarize its answer as below. 

RQ2: How effective and efficient would it be to use Natural Language Processing (NLP) along with Machine 

Learning (ML) technologies to automate the extraction of COINs from the text in API documentations? 

Answer: Initially, when using ComplementNaïveBayes algorithm for classifying Seven-COIN and Two-

COIN. We got encouraging results with F-measure of 70.0%, which is a quite good result. On the other hand, 

when classifying only Two-COIN, the results get better with F-measure of 81.9%, which is about 11.9% higher 

than the accuracy of classifying Seven-COIN. It is self-evident because classifying multi-classes requires more 

holistic data, while classifying data of less classes will show better results if we have the same volume of data. 

 

Similar as the first research question we have achieved further findings related to RQ2 that we formulate in 

the following questions and answer. 

 

Question C: What is the best text classification algorithm for identifying the COINs in API documents? 

Answer: In fact, for each problem domain, there is a different text classification algorithm. In particular, after 

our experiments that we have performed, we came up with that, ComplementNaiveBayes achieved the best 

performance in terms of accuracy in classifying the COINs. 

 

Question D: How can the classification model be used in practice? 

Answer: In fact, a simple and practical mechanism to use such model is through utilizing a plugin tool that 

works through a web browser. More specifically, we have developed the classification model using Weka API 

and Java API together. However, the user interface is designed as a chrome plugin, which can be used easily 

and instantly, and again the accuracy of our tool depends on the accuracy of the model that we have designed. 

 

Question E: What can improve efficiency? 

Answer: We expect that classifying more sentences from other API documents and adding them to the ground 

truth (i.e. COIN Corpus) will increase the effectiveness of our proposed ML classification model. 

   



Future Work 

 

82 

 

10 FUTURE WORK 

There is a window for more enhancements that can be performed in the future to our research and below 

we mention some of the most important ones. 

1. Improving the performance of our ML classification model. Obviously, this requires us to train the classifier 

on more training data set, which in turn requires us extra effort and time to classify more sentences of API 

documents into the COINs’ classes. As the volume of data plays a fundamental role in increasing the effi-

ciency of the automated classifier [28]. 

2. The use of deep learning techniques: which is  a branch of machine learning based on a set 

of algorithms that attempt to model high-level abstractions in data by utilizing multiple processing layers, 

with complex structures [82] [83]. Which has proven their effectiveness and superiority in the field of clas-

sification of texts [84]. In Addition, using such techniques may help in comprehending the textual content, 

which is one of the most serious challenges in the ML area. However, it is relatively difficult to apply such 

techniques because of their need for high hardware resources and equipment with high specifications (e.g., 

high processor speed and memory size).  

3. Preparing our tool for industrial usage by increasing its efficiency and supporting its work in different plat-

forms (i.e., to be compatible with different web browsers and IDE environments). 

4. Extending our tool with more features, so that it is able to find all COINs in an API document by segmenting 

it into sentences first, and then by classifying each sentence separately into the COIN classes. 

5. Improving the current ML classification model to do self-learning through the feedback collected from users 

such as engineers and architects. This is expected to improve the accuracy of the classifier due to the added 

knowledge by the experts. 

  

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
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11 APPENDIX  

11.1 Tables  

A. The extraction data sheet used for collecting data. 

Table 26. The extraction data sheet 

Sentence id Sentence COINS Type API Document 
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B. Part of Speech (POS) tagging [85] 

Table 27. Part-of-speech tags used in the Penn Treebank17 [86] 

# Tag Description 

1 CC Coordinating conjunction 

2 CD Cardinal number 

3 DT Determiner 

4 EX Existential there 

5 FW Foreign word 

6 IN Preposition or subordinating conjunction 

7 JJ Adjective 

8 JJR Adjective, comparative 

9 JJS Adjective, superlative 

10 LS List item marker 

11 MD Modal 

12 NN Noun, singular or mass 

13 NNS Noun, plural 

14 NNP Proper noun, singular 

15 NNPS Proper noun, plural 

16 PDT Predeterminer 

17 POS Possessive ending 

18 PRP Personal pronoun 

19 PRP$ Possessive pronoun 

20 RB Adverb 

21 RBR Adverb, comparative 

22 RBS Adverb, superlative 

23 RP Particle 

24 SYM Symbol 

25 TO to 

26 UH Interjection 

27 VB Verb, base form 

28 VBD Verb, past tense 

29 VBG Verb, gerund or present participle 

30 VBN Verb, past participle 

31 VBP Verb, non-3rd person singular present 

32 VBZ Verb, 3rd person singular present 

33 WDT Wh-determiner 

34 WP Wh-pronoun 

35 WP$ Possessive wh-pronoun 

36 WRB Wh-adverb 

  

                                                           
17 Penn Treebank is a large corpus, approximately 7 million words of part-of-speech tagged text, 3 million words of skel-

etally parsed text, over 2 million words of text parsed for predicate argument structure, and 1.6 million words of tran-

scribed spoken text annotated for speech disfluencies. URL: http://citeseerx.ist.psu.edu/viewdoc/sum-

mary?doi=10.1.1.9.8216  [86]. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8216
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8216
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C. Top frequently terms 

 

Table 28. Top 30 frequently terms used in "Dynamic" class 

# Co-occurrence keyword 

1 111 job 

2 94 user 

3 80 app 

4 51 interface 

5 46 client 

6 46 create 

7 46 method 

8 45 notification 

9 44 use 

10 42 request 

11 41 access 

12 40 api 

13 38 object 

14 38 plug 

15 38 value 

16 36 watch-chain 

17 35 specify 

18 34 lock 

19 33 time-share 

20 32 schedule 

21 30 include 

22 30 set-up 

23 29 run 

24 28 property 

25 27 application 

26 27 data 

27 27 platform 

28 26 code 

29 26 default 

30 26 note 
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Table 29. Top 30 frequently terms used in "Semantic" class 

# Co-occurrence keyword 

1 84 user 

2 78 plug 

3 67 app 

4 59 provide 

5 50 platform 

6 48 interface 

7 46 job 

8 45 extension 

9 43 content 

10 43 notification 

11 40 application 

12 39 use 

13 38 work-in 

14 36 person 

15 36 return 

16 33 display 

17 32 request 

18 30 api 

19 30 object 

20 29 allow 

21 29 define 

22 29 support 

23 29 type 

24 28 result 

25 28 system 

26 28 watch-chain 

27 26 create 

28 25 file 

29 24 client 

30 24 method 
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Table 30. Top 30 frequently terms used in "Structure" class 

# Co-occurrence keyword 

1 20 interface 

2 18 content 

3 17 app 

4 17 contain 

5 16 collection 

6 16 type 

7 14 person 

8 13 include 

9 13 object 

10 12 plug 

11 11 file 

12 11 platform 

13 10 implement 

14 10 property 

15 9 bundle 

16 9 user 

17 8 class 

18 7 application 

19 7 controller 

20 7 distribution 

21 7 extension 

22 7 watch-chain 

23 6 data 

24 6 eclipse 

25 6 note 

26 6 represent 

27 6 separate 

28 6 work-in 

29 5 button 

30 5 create 
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Table 31. Top 30 frequently terms used in "Syntax" class 

# Co-occurrence keyword 

1 15 calculate 

2 15 route 

3 13 indicate 

4 10 specify 

5 9 user 

6 8 prefer 

7 7 conversation 

8 6 avoid 

9 6 direction 

10 6 transit 

11 5 person 

12 5 travel 

13 4 character 

14 4 element 

15 4 mode 

16 4 set-up 

17 4 time-share 

18 4 xml 

19 3 activity 

20 3 app 

21 3 application 

22 3 call 

23 3 collection 

24 3 eclipse 

25 3 information 

26 3 key 

27 3 language 

28 3 manifest 

29 3 platform 

30 3 plug 
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Table 32. Top 30 frequently terms used in "Quality" class 

# Co-occurrence keyword 

1 6 user 

2 4 direction 

3 4 provide 

4 3 access 

5 3 api 

6 3 note 

7 3 result 

8 3 token 

9 2 application 

10 2 availability 

11 2 bicycle 

12 2 cancel 

13 2 cause 

14 2 content 

15 2 display 

16 2 fail 

17 2 include 

18 2 integrate 

19 2 javascript 

20 2 language 

21 2 lead-in 

22 2 malicious 

23 2 match 

24 2 oauth 

25 2 optimize 

26 2 parse 

27 2 performance 

28 2 platform 

29 2 plug 

30 2 presence 
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Table 33. Action Verbes 

# Co-occurrence Verb 

1 46 create 

2 44 use 

3 42 request 

4 41 access 

5 38 plug 

6 34 lock 

7 30 include 

8 30 set-up 

9 29 run 

10 25 start 

11 22 call-up 

12 20 redirect 

13 19 register 

14 19 track 

15 18 run-up 

16 17 add 

17 17 update 

18 15 acquire 

19 15 avoid 

20 14 call 

21 13 perform 

22 12 return 

23 12 store 

24 11 implement 

25 11 install 

26 10 build-up 

27 10 launch 

28 10 receive 

29 10 search 

30 9 connect 

31 9 determine 

32 9 flow 

33 9 list 

34 9 load 

35 8 execute 

36 8 initiate 

37 8 select 

38 8 send 

49 8 share 
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Table 34. Output/Input verbs 

# Verb 

1 access 

2 display 

3 download 

4 fetch 

5 notify 

6 read 

7 recall 

8 receive 

9 recover 

10 response 

11 retrieve 

12 return 

13 select 

14 send 

15 share 

16 submit 

17 upload 

 

Table 35. Supporting verbs 

# Verb 

1 support 

2 provide 

3 Suggest 

4 give 

5 propose 

 

Table 36. Admission verbs 

# Verb 

1 allow 

2 enable 

3 admit 

4 let 

5 give 

6 grant 

7 permit 

8 facilitate 

9 authorize 

10 prevent 

11 stop 

12 avoid 
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Table 37. Defined Stopwords 

# Stopword 

1 ! 

2 # 

3 #for 

4 $ 

5 $ 

6 * 

7 / 

8 @ 

9 + 

10 a 

11 about 

12 above 

13 all 

14 also 

15 an 

16 and 

17 another 

18 any 

19 any 

20 anyone 

21 are 

22 as 

23 at 

24 b 

25 be 

26 but 

27 by 

28 c 

29 etc 

30 everyone 

31 here 

32 in 

33 into 

34 is 

35 it 

36 its 

37 like 

38 no 

39 not 

40 now 

41 of 

42 often 

43 on 

44 only 
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45 or 

46 other 

47 others 

48 our 

49 over 

50 re 

51 s 

52 s 

53 such 

54 t 

55 that 

56 the 

57 their 

58 them 

59 then 

60 there 

61 therefore 

62 these 

63 they 

64 this 

65 those 

66 to 

67 up 

68 us 

69 was 

70 we 

71 were 

72 which 

73 who 

74 will 

75 with 

76 within 

77 x 

78 y 

79 yours 

80 z 
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