I.: TECHNISCHE UNIVERSITAT
s KAISERSLAUTERN

Automatic Extraction of Conceptual Interoperability

Constraints from APl Documentation

MASTER THESIS
By

Mohammed Ismail Abujayyab

387380
April, 2016

MASTER OF SCIENCE

Department of Computer Science

TECHNISCHEN UNIVERSITAT KAISERSLAUTERN

Kaiserslautern, Germany

https://de.linkedin.com/in/mohammedabujayyab
https://de.linkedin.com/in/mohammedabujayyab
http://www.uni-kl.de/en/home/

Automatic Extraction of Conceptual Interoperability

Constraints from APl Documentation

MASTER THESIS

By
Mohammed Ismail Abujayyab

387380
April, 2016

First Supervisor: Prof. Dr. Dr. h.c. H. Dieter Rombach

Second Supervisor: Hadil Abukwaik, MSc.

https://de.linkedin.com/in/mohammedabujayyab
https://de.linkedin.com/in/mohammedabujayyab
http://wwwagse.informatik.uni-kl.de/staff/rombach/
http://wwwagse.informatik.uni-kl.de/staff/abukwaik/

DECLARATION OF AUTHORSHIP

I, Mohammed Ismail Abujayyab, declare that this thesis titled, Automatic Extraction of Conceptual
Interoperability Constraints from APl Documentation’ and the work presented in it are my own. I

confirm that:

e This work was done wholly or mainly while in candidature for a master degree at this Uni-
versity.

o Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

o Where | have consulted the published work of others, this is always clearly attributed.

o Where | have quoted from the work of others, the source is always given. With the excep-
tion of such quotations, this thesis is entirely my own work.

o Where the thesis is based on work done by myself jointly with others, | have made clear
exactly what was done by others and what | have contributed myself.

¢ | have acknowledged all main sources of help.

Signature

Place, Date

DEDICATION

This work is dedicated to my family

Mohammed Ismail Abujayyab

ACKNOWLEDGEMENTS

All praises to Almighty Allah Who makes me able to complete this task. My words of special
thanks to my thesis supervisors Prof. Dr. Dr. h.c. H. Dieter Rombach and Hadil Abukwaik, MSc.
who played a major role in the fulfillment of this thesis, without their valuable directions, this might
be an impossible work for me. The door to Hadil Abukwaik, MSc. office was always open whenever
I ran into a trouble spot or had a question about my research or writing. She consistently steered me
in the right the direction whenever she thought | needed it.

Next, | must express my very profound gratitude to my family for providing me with unfailing
support and continuous encouragement throughout my years of study, the process of the thesis re-
search and writing.

In the last, I am really thankful to my friends Aied Abujayyab, Mohammed Abufouda, Hafiz Aziza,
Ahmed Alaraj, Ramzi Matar and Mahmoud Abujayyab who always spare their precious time for

me; remain with me during different phases of life, with their sincere support and encouragement.

This accomplishment would not have been possible without them. Thank you!

Author

Mohammed Ismail Abujayyab

Table of Contents

1 INTRODUCTIONcctitiiitite ettt sttt sttt ettt st sttt se b s be e e b e st e e be st st e b e sbe st e b e sbe s ebe st e e 12
11 OVEBIVIBW ..ottt bbbtk b ekttt b ekt b ettt b et n bbb ens 12
1.2 Research methodology and CONtriBULIONS..........ccccveiiicie i 12
1.3 OULTINE .ttt ettt et e e b et s b e b e s b e eb e e s e et et et e ebesbeebeeneen e et e nr et e 14

2 BACKGROUND.....iciiietite ettt sttt sttt s e te st e s e ebesb e e et e sse e etesbe e ebesbe e ebestesaebestereatesresens 15
2.1 Conceptual INteroperabilityccooiiiiiii e 15
2.2 Natural Language Processing (NLP)c.ciuoiiioiiiie e te e sae e e e nneens 17
2.3 Machine Learning (ML)ccoo oot sttt sre e e 18

3 RELATED WORK ...ttt sttt sttt sttt ettt st et ebe st e e ebesbe e abesbe e nbesnerens 22

4 RESEARCH METHODOLOGY ...ooiiiiiiiii ettt sttt te e s e snta e s baesnteesntaesnteesnaeeanneeans 24
4.1 RESEAICH MELNOGSottt r e s e e e seeneas 24
4.2 Goals and Research QUESTIONSviieieiiieie ittt sttt se e e 24

5 RESEARCH PART ONE: MULTIPLE-CASE STUDYoccoititriiiinienieiese sttt 26
5.1 Study design (Holistic MUltiple-Case StUAY)c.coveiveiiiieie e 26
5.2 RS 00 Y o U o USRS 27
5.3 [T o] 011 [0 o PSS 44
5.4 THrEatS t0 VAITILYooveiiiie bbb 45

6 RESEARCH PART TWO: AUTOMATIC IDENTIFICATIONcooiiiiiieeiee e 47

6.1 First Approach: Rule-based Machine Learning Classification............c.cccovevviveiie i s, 47

Rule construction USING NLP ..o 47
EXPIOratory EXPEIIMENT.ccviiiiiie e cieett ettt s te et e et e st e st et e et e e beesaesneesnnesneenreenreenes 50

Y LU LT T AV 1= (TS 53
RESUILS aNd EVAIUALION..........oouiiiiiiieceiee ettt st sre e e e e e e nee e e 54

6.2 Second Approach: Bag-of-Words-based Machine Learning Classification............c..ccccccovvenene. 56

DU W 0 €] 0T L= LT o SR 56
Perquisites input for our ML classification model. ..o 58
EXPIOratory EXPEIIMENT.......c.iiiiiiiiieiei ettt bbbttt e e b e 58

Y LU LT T AV =] (TS 60
RESUILS @Nd EVAIUALION.c..eviiiiice ettt et ne e e e e nee e e 60

7 TECHNICAL SUPPORT (A TOOL PROTOTYPE)cocotiteiieieiesesesesteeeeiesiesee e e snaesesaesaeseenees 68
PIINCIPIE OF WOTK ...t bbbt e b e 68

USIiNG the CEP-COIN TOOIcoiiiiiiiiieee bbbt 69
CEP-COIN ATCRITECIUIE ...ttt ettt bbbt bt et naenee e 71
CEP-COIN IMPIEMENTALIONoviiiitiietiite ettt ettt 72

QLI Lo I T {04 17V - ST 75

Future Work and deVelOpMENT........cviiiieiee et 75

8 RESEARCH CHALLENGEScotitiiiiti ettt sttt ettt sttt tesbe e sbesaesaesesne e 77

8.1 I 1ol o)l o o] Lo I - - WS 77

8.2 Identifying cross-case COINSs identification FUlES.cccocvvveii i 78
8.3 Understanding the semantics and CONTEXES.eviireriiiriiiineeen s 78
8.4 Limitation OF FESOUICES.eiuieie ettt et sttt e e 79
9 OVERALL DISCUSSION AND CONCLUSIONcccotiiitttinieitnirieenesisie st 80
10 FUTURE WORK ..ottt ettt bbbttt sttt 82
11 APPENDIX ..otttk t ettt bbb bR et bbbt n b enes 83
0 R o SOOI 83
12 BIDIIOGIAPNY ...t 94

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1. An example of POS tagging, chunking and clause identification. [17].ccccocereiniinniieneiiene 17
2. Standard Stanford dependencies [18]cciuiiieiiiiriiie et 17
3. Text Classification WOIKFIOW.couiiiiiiiiiiic e 19
4. Feature Selection WOIKFIOWooiiiiiiiiic s 20
5. Holistic multiple-case StUAY [49].....couci i 26
6. CASE EXECULION PIOCESS ...v.vvetesrerieterteteete sttt et sttt ebesee st ebeseebeeb st e s e ebeab e s e ebenb et e bt nb e e abenbe e et e ane e et e nne e 28
7. Data Storage along data preparation and COIECIONccoiiiiiiiiiiiic e 30
8. Total effort in time with respect to the dOCUMENT SIZE........cccciiiiiiiiiirce e 31
9. Content analysis method 'Process fIOW'cooiiiiiiii e 32
10. Snapshot of the manual identification of the PAtternS..........ccccooeiiiieiine e 32
11. Pseudo code of deriving Two-COIN corpus from Seven-COIN COIPUS.........ccoevererieerenieeniennnns 33
12. Seven-COIN corpus and TWO-COIN COIPUS SEIUCTUIEcviueieiiienieiesieniee e 33
13. Seven-COIN instances diStriDULIONcooiiiiiiieie e 35
14. Two-COIN instances diStriDULIONcoiiiiirieiiere e 35
15. Cases diStribution OVEr COINS ..ottt 36
16. The classification process performed by two different researcherscccocoocvvcvviviiiiieienenen, 46
17. 'Process Flow' of the first machine learning classification approachcc.coeevenviienciienn 47
18. Snapshot of an excerpt of the rule MatriXcccviiiiiiiii e 51
19. Rules distribution over the COINS ClIaSSES.........cuiirieirerieiiienieie ettt 52
20. 'Process FIOW' of 0Ur MOdel [2]cviiiiiiiiiiie e 56
21. Text algorithms performance Via N-GramsS..........ccoeiiiiiiiiiieinineese et 62
22. Comparison between using corpus size corresponding to different N-Grams...........cccccovevvvinenns 63
23. Performance of text classification algorithms via different N-Gram combinations 63
24, EXplanation of HYPEINYM .ottt 64
25. An excerpt of the developed Python code to extract Hypernym using the WordNet 64
26. Accuracy comparison between different classification algorithms ..o 66
27. Algorithms performance Via N-Gram ..o 66
28. Classification performance via different N-Gram combinations in Two-COIN corpus............... 67
29. Accuracy comparision between two different Corporacovvvireiiineiiieseese e 67
30. Process FIow 0f the CEP-COINociiiiiiiiiieneee et 68
31. InStalling CEP-COIN TOONc.viuiitiiiiiitiieeiiie ettt st sne e 69
32. Using CEP-COIN T00l from CONEXE MENUc.viuiriiiiierieiiiiesieesie ettt 69
33. Using CEP-COIN from PIUGIN GUI ..ottt 70
34. Using CEP-COIN service from the JSP Pageccooeiiiiiiiirieisie e 70
35. Architecture 0f the CEP-COIN.........coiiiiiiiiiiiie et 72
36. JQuery for requesting the ClassifiCation SErVICE.........ccoviiiiiiiiiie e 73
37. Server Side ProCesSES FIOWcciiiiiiiiiii ittt 73
38. loadModel method iIMpPIEMENTALIONciiiiiiiie e 74

file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892722
file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892752
file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892753
file:///C:/Users/abu/Downloads/Mohammed-Thesis7-4%20-%20HA%20comments.docx%23_Toc447892754

List of Tables

Table 1. Conceptual Interoperability CONStraiNtS [1].......coeiveiriiriiiriieireeis s 16
Table 2. N-Grams EXAMPIEoouiiiiriiiie bbbttt ettt bbbt bbb 20
Table 3. Mashups score of AP dOCUMENTALIONccueiiiiiiiieiiee e s 27
Table 4. AP doCUMENLALION'S URL ..ottt ettt sttt see e e 28
Table 5. Data extraction sheet with example of collected data from 3 Cases.........ccccvvrvirinvincneiicnnn 29
Table 6. Total effort in time with respect to the dOCUMENE SIZE..........cooeiiiiiiiic 31
Table 7. Example of the data extraction sheet of the Seven-COIN COIPUS.........ccevrerieireniinineeseienes 34
Table 8. The data extraction sheet of TWO-COINccocciiiiiiiiiiee e e 34
Table 9. The distribution of AP DOCUMENTALION.coiiiieiieieee e 34
Table 10. COINSs classes distribution Per aCh CASEccoerieiriiiiriiciree s 36
Table 11. Top 5 terms are frequently used per €aCh ClasS...........cooviiririiiriicee s 37
Table 12. Total Ratio of the Majority COINScciiiiiiiiiiciree s 38
Table 13. Identified patterns of NOt-COIN ClaSScccviviiiiriieiee st 39
Table 14. Identified patterns of DYNAMIC CIASS..........oiiiiiiiiiiie s 40
Table 15. Identified patterns 0f SEMANTIC CIASSccvviviiieiieieee e 42
Table 16. Rules Names With @XAmMPIES ..o 49
Table 17. Model performance for classifying SEVEN-COINcccviriiriniiieee s 54
Table 18. Model performance for classifying TWO-COIN..........ccociriiiiiiiiiieecseeeeee s 54
Table 19. Comparision between Stemming and Lemmatization in terms of F-Measure............cccccecevuenee. 60
Table 20. Accuracy comparison between different classification algorithms............ccccocvvivviiciincieine, 61
Table 21. Accuracy comparison by using all words and top 1500 WOIdSccoererenenieniesienienene e 62
Table 22. F-Measure of using the WordNet with respect to non-using of WordNetccccoevvirennnnn. 65
Table 23. Accuracy comparison between different classification algorithms.............cccocvoviviiiiiceine, 65
Table 24. Accuracy comparision between two different COrporaovovvvvveeiereneie e 67
Table 25. Platform CofigUIation ..o 75
Table 26. The extraction data SHEELoci e 83
Table 27. Part-of-speech tags used in the Penn Treebank [86]cccoovvirirrireniiiieiseeese s 84
Table 28. Top 30 frequently terms used in "DYNaMIC™ ClaSS......cceierireriereeieierere e 85
Table 29. Top 30 frequently terms used in "Semantic' Class..........ccvvrvrieriirieeiee e 86
Table 30. Top 30 frequently terms used in "StruCtUre" ClaSScovvvrerierieeieiere e 87
Table 31. Top 30 frequently terms used in "SYNtax™ CIAaSScccverererieir s 88
Table 32. Top 30 frequently terms used in "QUAalILY" ClaSS.......cceverieririir s 89
TaDIE 33, ACHION VEIDES ...ttt sttt s et e e e beseeetesreeneeneeneeeeneenees 90
Table 34. OULPUL/INPUL VDS ...ttt 91
Table 35. SUPPOILING VEIDSe ettt sttt se e et et seentesreeneeneeneeeeneenees 91
Table 36. AAMISSION VEIDSecieieiiiiesie st ettt et e s testeeseesaesee e e steseestesreenaeneeneenaeneenres 91
Table 37. DefiNed STOPWOITSc.viviiiieiirieieter ettt ettt sttt b et neenes 92

10

Abstract

Successfully integrating software systems requires fulfilling their conceptual interoperability constraints
that restrict their state or behavior. Typically, the only source for these information that is available for third-
party clients is the APl documentation. However, manually reading and analyzing the natural language (NL)
text within such API documents, which is unstructured textual content, is a tedious and time consuming task
and it requires lexical and linguistic analysis skills. Moreover, it might undergo many mistakes and misunder-
standings leading to unexpected mismatches and cost consequences to fix them. This encouraged us to provide
a means to support software analysts and the architect to help them in increasing their efficiency and effec-
tiveness for identifying the conceptual interoperability constraints automatically rather than manually from the

text in APl documentations.

To achieve our goals in this research, we followed an empirical-based methodology in incorporating ma-
chine learning (ML) technologies together with natural language processing (NLP) ones. The main contribu-
tions of this thesis are wrapped within our methodology. First, we started with a manual development for a
corpus, which is a collection of relevant sentences we chose from real API documentations then we manually
classified them into different classes. This classification is based on the COnceptual Interoperability coN-
straints (COIN) model, which has seven classes (i.e. NOT-COIN, Dynamic, Semantic, Structure, Syntax, Con-
text and Quality). Then, we built rules for these classes. Afterwards, we decided to explore the potentials of
using the ML classifiers, thus we designed the classification model that defines the frequently used patterns
and terms for representing conceptual interoperability constraints in the NL text of APl documents. By training
the classification model on our developed corpus. We were able to run many text classification algorithms and
we have achieved promising results F-measure of 70.0% for classifying seven-classes and F-measure of
81.9% for classifying two-classes. Finally, we implemented a plugin tool by utilizing the classifier that we

trained, so this tool allows architects to classify any texts into one of these seven classes.

11

Introduction

1 INTRODUCTION

1.1 Overview

Conceptual interoperability constraints (COINS) are restrictions on interoperable software units and their
related data elements at different conceptual levels (i.e., syntax, semantics, structure, dynamics, context, and
quality) [1]. For successful interoperations, such constraints need to be identified and fulfilled. Otherwise, they
may cause conceptual mismatches that hinder the interoperation or even produce meaningless results, and
consequently lead to expensive resolution at later project stages. Therefore, third-party clients need to effec-
tively analyze the shared documentation of external APls. However, manual filtering of natural language (NL)
text within API documents is a tedious, exhaustive and time consuming task. To cope with these challenges,
we elaborate on Abukwaik’s [1] ideas of extracting a complementary set of conceptual constraints from text
in APl documentation using machine learning (ML) and natural language processing (NLP) technologies.
Our goal in this thesis is to support software architects and analysts in performing the conceptual interopera-
bility analysis effectively, while keeping the associated cost of identifying COINSs low. In our work, we follow
a systematic empirical-based methodology that has two advantages, i.e., tracing and verifying documented
results between the research phases, and repeating the defined activities in our protocol by other researchers to

address researcher bias threat to validity.

In this thesis, we expand our previous research [2] by extracting more patterns and rules from the API
documents and investigating more text classification algorithms, therefore conducting more experiments and
then comparing results accuracy and studying their efficiency and effectiveness as well in the usage of the
automated COINs classification (which is tedious to do manually). We mainly rely on our manual classifica-
tion for the COINs as a ground truth, which we created from APl documentation to be fed up to our text

classification model.

Our previous research [2] shows an acceptable accuracy level in the classification of the COINs automati-
cally and this will benefit designers and architects in finding out COINs from any APl documentation, where

it is tedious and time consuming to be performed manually.

1.2 Research methodology and contributions

In this, we followed a methodology that included the following main research tasks:

1- Reviewing the State-of-the-Art (SoA): First, a literature review to identify the existing methods and
technologies to extract conceptual interoperability constraints from NL documentation.

2- Exploratory multiple-case study: In order to find out the state of current APl documentation with re-
gards to the way the conceptual interoperability constraints are documented, we analyzed multiple API

documentations (cases). Each case study goes through three main phases:

— Data preparation for collecting evidence where text will be pre-processed into single sentences.

12

Introduction

Data collection starts with labeling each sentence with one of the COINSs classes [1]. Then, sentences

that agree on the label are grouped together.

— Thematic analysis for the produced groups of sentences will be conducted to find out the frequent

3-

terms, patterns and sentence structures that will be encoded into initial themes.

Exploring the potentials of ML and NLP in extracting the COINs from APl documentation.

Our research contributions are listed as follows:

1-

Transforming raw unstructured data (i.e., text in API documents) into structured data with unified
format to be used in next research steps.

Building the COINSs corpus (i.e. ground truth): Manually classifying the conceptual interoperability
constraints (COINs) of the collected data with the help of “Constraints of COIN Model”. [1]
Defining representation patterns of COINs: Manually mining and analyzing of the textual content of
the API documents in order to identify the frequently used terms and sentences structures from the
collected APl documents.

Building the text classification model (classifier): Utilizing the obtained corpus, we designed two
different classifiers. These classifiers are used for automatically classifying the COINs.

Exploratory experiment: Evaluating the efficiency of the created classifiers in terms of accuracy by
conducting experiments that utilize different text classification algorithms.

Developing a plugin prototype, which is available to be used as web service?.

Parts of our presented work in this thesis has been accepted in The 38th International Conference on
Software Engineering (ICSE 2016) Companion, and will be presented during the conference that will
held on May 14-22, 2016, Austin, TX, USA [2]

1 Web service: is a Program Integration across Application and Organization boundaries https://www.w3.0rg/Designls-
sues/WebServices.html

13

Introduction

1.3 Outline

The rest chapters of our thesis are organized as the following:

— Chapter 2 presents a background on Conceptual Interoperability Constraints and its different models. It also
offers some definitions for the natural language processing, machine learning terms, and the texts classification
methods and algorithms, which are used in our proposed solution

— Chapter 3 overviews the related works that deal with our stated problem of identifying software interoperabil-
ity constraints and highlights their advantages. Afterward, this chapter explains briefly the differences between
our approach and the presented related works.

— Chapter 4 presents the research methodology that we followed in solving the problem, and describes the goals
of our research methods.

— Chapter 5 poses the first part of the research, which is a multiple-case study. We describe the study design,
results, and discussion along with the threats to validity.

— Chapter 6 presents the second research part of our study, which answers the question about the efficiency of
the natural language processing and machine learning in solving the problem of text classification. In this sec-
tion, we offer two different approaches to solve the problem and answering the research questions, with pre-
senting the results, evaluation and clarifying the efficiency of each of the two approaches.

— Chapter 7 introduces a technical solution by developing a tool prototype, in order to provide the software
architects and analysts with means to facilitate the COINSs classification from any API documentation. This
section also explains in details the design, implementation, and performance evaluation of this tool prototype

— Chapter 8 presents the most important challenges and obstacles that we faced during this research work, and
how we overcame them.

— Chapter 9 presents the results that have been accomplished through our thesis in meeting the research and
answering its related questions.

— Chapter 10 introduces the future vision for extending this research from different aspects. It offers some ideas,
which might improve the performance of the automated classification model, and some other suggestions on

how to take advantage of this research in other practical area especially in industry.

14

Background

2 BACKGROUND

In this chapter, we start with introducing the definition of conceptual interoperability and the COnceptual
Interoperability coNstraints (COINS). Then, we present a basic introduction to natural language processing,

machine learning, and text classification that we have utilized through our research.

2.1 Conceptual Interoperability

In computer science, interoperability is “the ability of two or more systems or components to exchange
information and to use the information that has been exchanged.” [3] [4].
Interoperability between software systems is one of the most important modern concepts that receive consid-
erable attention recently, because of many considerations such as communication, compatibility and interac-
tion between different systems, which become very important. Besides, the interoperability is facing many
challenges and obstacles, such as technical heterogeneity (e.qg., different communication protocols, data input

and output type and parameters orders) [1].

Due to the importance of the interoperability, multiple classification-models have been proposed for deter-
mining, and organizing the interoperability levels in software systems. For example, (1) the Levels of ISs
Interoperability (LISI) [5], (2) NC3TA Reference Model for Interoperability (NMI) [6] and (3) the Levels of
Conceptual Interoperability Model (LCIM) [7]. The main importance of these models is their ability to identify
both the levels of compatibility between systems as well as the effort needed for configuring these systems in

order to work interchangeably and integrally [8].

In our thesis, we based our research on the Conceptual Interoperability Constraints (COIN) Model [1], be-
cause it focuses on the conceptual constraints that are of our interest and because it can be applied to different

software systems (e.g., information systems, embedded systems, mobile systems, etc.).

According to Abukwaik [1] , The COINs are defined as the conceptual characteristics that govern the software
system’s interoperability with other systems. That is, wrong understanding, misassumption and misuse of these
conceptual constraints might defect the desired interoperability causing systems’ inconsistency in getting mu-
tually meaningful results and leading to serious consequences accordingly (e.g., cost increase or project fail-
ure). Obviously, explicit and clear declaration about the system COINSs helps analysts in detecting the concep-

tual mismatches and thus allows for a more effective and efficient resolving for these mismatches [1].

Table 1 represents the current set of COINs and their classes with examples. We introduce these classes

briefly here, but for more details about it, you can see [1].

COIN Classes: Abukwaik et. al. [1], defined the six-classes of the COINSs as follow:

1. Syntax COINs “specify the concept-packaging methods (i.e., the conceptual modeling language) and the
lexical references used in the system. Examining the syntactic match paves the way towards investigating
the semantic one. “.

2. Semantic COINs “state semantic constraints (e.g., the measurement unit of a calculateDistance service is

km not mile), and semantic references (e.g., reference ontologies) that encode the meaning of exchanged

15

Background

data and service goals. As no reference ontology has been widely adopted yet, we consider this a theoretical
constraint which is left for future advances in the ontology research. .

3. Structure COINs “depict system’s elements, their relations, and their arrangements that influence the
interoperation results, e.g., interoperating with a software system without being aware of its data distribu-
tion may introduce a security threat if network links between remote sites are not encrypted. In this case,
the distribution of the system is a structural COIN. “

4. Dynamic COINs “report information about the behavior of the interoperability elements during interac-
tion. If such details are missed, they can introduce conceptual interaction flaws. For example, interoperat-
ing with a software system of regularly changing data may lead to synchronization issues if this property is
not declared and addressed properly. .

5. Context COINSs “pertain to external aspects forming the interoperation settings, i.e., user and usage prop-
erties. For example, software systems that are designed to interoperate with software systems on desktop
devices may cause display and memory issues on mobile devices. ”

6. Quality COINs “capture required and provided quality characteristics related to exchanged data and ser-

vices. For example, inaccurate results may occur when interoperating. “

Table 1. Conceptual Interoperability Constraints [1]

Category COIN name Examples of value

Syntax Lexical references Dictionary, thesaurus, glossary, etc.
Modeling lang. XML, UML, ADL, WSDL, etc.

Semantic | Semantic references | Reference ontologies
Semantic constraints Data units and scale ratio

Structure | Data structural Invariants, inherited constraints, and
constraints multiplicity constraints
Data storage Relational database, flat files. etc.
Distribution Distributed, centralized
Encapsulation Encapsulated , not encapsulated
Concurrency Single-threaded, multi-threaded
Lavering Lavyered. not layered

Dynamic | Data change Periodic, irregular, continuous, etc.
Service conditions Pre, post, and time conditions
Interaction property State(ful/less), (a)synchronous, etc.
Interaction time Session timeline, acknowledgment
constraints timeline, response timeline, etc.
Communication Messaging. procedure call, blackboard,
stvle streaming

Coniext Usage context device type, wired/wireless, access

rate, time, location, etc.

Intended users Human/machine, gender, age, etc.

Quality Data quality Security, trust, accuracy, efc.
Service quality Safety, availability, efficiency, etc.

16

Background

2.2 Natural Language Processing (NLP)

Natural Language Processing (NLP) [9] is a field in computer science that combines the usage of both
Artificial Intelligence (Al) [10] and Computational Linguistics (CL) [11]. There is a progress in researches
that aims at improving the accuracy of finding the grammatical structures of the sentences [12] [13] [14].
Below we will introduce some of the main NLP technologies, which are used in the construction of any lin-

guistic analysis system to identify the grammatical structures.

Parts Of Speech (POS) tagging is known also as a grammar classification of the words in the sentence, this
technique is used to identify the part of speech in terms of (noun, verb, pronoun, adjective, etc.) [15] [16]
Example: a sentence “the child watches the match”, here “the” is a determiner, “child” is a noun, “watches”

is a verb, “match” is a noun. For more information, see Fig. 1

Chunking is parsing a sentence into phrases and clauses, in which they are groups of interconnected set of

words with logical relation, such as verb phrase and noun phrase [17]. See Fig. 1

s (Sentence)

Ve : . :
VP (Verb phrase) Chunking/clause

VP (Verb phrase) identification
NP (Noun phrase) NP (Noun plirase)
._,-'—"""'_'_'_FFH-‘-___\"""——_
DT NN MD VB DT NN
(Determiner) (Noun) (Modal) Werb] [Detemmer} {Ncrunjl {Hcrur;]} POS tagging

The | |ealler| | must hm’n’ | |_fffj ;mdu mcl:’ar

Fig. 1. An example of POS tagging, chunking and clause identification. [17].

Typed Dependencies [12] [14] is a technique to provide a simple description of the grammatical relations,
which are oriented in particular toward non-linguistics experts in order to perform tasks related to NLP. It
provides a hierarchical structure of the words in order to illustrate the words dependencies in a sentence with
a simple description of each dependency. For example a sentence “Bills on ports and immigration were sub-
mitted by Senator Brownback, Republican of Kansas “ is analyzed into a grammatical relations as shown in
Fig. 2 [18].

submitted
’Ab_,fp(mx &nﬂpaNm
Bills were Brownback
ﬁrep_rm /mr \Zme'
ports prep_on Senator Republican
\‘c'()r.gjiand L?WPJ)f
immigration Kansas

Fig. 2. Standard Stanford dependencies [18]

17

Background

Named Entity Recognition [19] is also known as entity identification, which is a technique to extract infor-
mation about words in a sentence by classifying the words based on predefined classes. These classes often
have a higher level of abstraction, and depends fundamentally on the semantic meaning of the words. For
example “USA, Germany, UK” are transformed into a word “Country”. This technique is helpful in facilitating

the semantic meaning by finding the main entity that these words belong to.

2.3 Machine Learning (ML)

Itis a branch of computer science and a part of Artificial Intelligence (Al). In particular, it refers to training
the computer on specific patterns that depend on the problem domain by utilizing some of the machine learning
algorithms [20], in order to enable the automatic prediction and detection of these patterns by the machine
[21]. In this section, we introduce some of the ML text classification techniques and statistical language mod-

eling that we utilized in our research.

Text Classification (TC)

Text classification (TC) is the process of classifying sentences in documents of text into two or more pre-
defined classes (classes) [22]. In principle, TC is a subjective task, for example, when two experts (human or
artificial) decide whether to classify a sentence S in document D under class C, they might also disagree, and
in fact, this happens with relatively high frequency [23].

There are many traditional text classifier algorithms such as Naive Bayes [24] [25], Support, Vector Ma-
chine [26] [27], etc. The performance of any of these classifiers depends mainly on the quality and the quantity
of the training dataset, which is manually labeled and carefully selected to be representative as much as possi-

ble. The more proper training of labeled data the better accuracy the classifier achieves [28].

Text Classification Workflow

In Text classification, there are two main processes [29]. The first one is the training process, in which the
classifier is learned on some classified data sample. While, the second is the prediction process, in which the
classifier assigns the suitable class of a given data. It is important to mention that, before performing the
training and prediction processes, two interior procedures need to be performed on the input document, which
contains data. These two procedures are the “features extraction” and the “feature selection” that we explain

next in details. In Fig. 3, we summarize the text classification workflow.

18

Background

Training
; Machine
Document . F Training
; e | [Algortim
1 Extractor Selector
Extracted Selected Fea-
Features tures N
<Tnhput>
Prediction
EE— v
Document Feature IE Feature Classifier ql
dz Extractor Selector —’III Model assof d
Extracted Selected
<Input> Features Features <Output>

Fig. 3. Text Classification Workflow

Feature Extraction

It is the process of deriving features from the existing raw data [30] . The goal of the feature extraction is
to find the most representative characteristics from the original data. These features should be carefully ex-
tracted, because they have to represent the important aspects of the sentence structure, semantic, context and
all other significant information as well.
There are many different feature extraction techniques can be applied for unstructured text. Some of the com-
mon ones are called statistical language modeling techniques [31]. In these techniques, the word sequences

are assigned a statistical probability [31]. Here are some of these techniques:

1. Bag of Words (BOWSs) [32] is a simple technique for text classification, in this approach, each word
in a sentence is considered as a feature and a document is represented as a matrix of weighted values
using some kind of a weighting method such as TF-IDF (Term frequency —Inverse Document Fre-
quency) [33]. However, BOWs model has some limitation like that it does not consider both the
grammar and the meaning of the sentence. This is because it ignores the words ordering and losses
the semantics of the words, but still it gives a score about the words importance in the whole document
[34]. For example: consider a sentence like ‘The software has configurations’ In BOWS, each sen-
tence is represented as a matrix of features of single separated words like "The",”soft-
ware”,"has",”configurations”

2. N-Grams is a combination representation of all of adjacent words in a sentence [35]. N can be any
number greater than zero (N > 0). Thus, 1-Gram refers to unigram that is the simplest form of N-
Gram model, and in this case, a sentence is represented by a single word. Similarly, 2-Grams stands
for bigrams, in which a sentence is represented by two sequence words together. In the same way,

3-Grams are trigrams that represents a sentence by three sequence words together. An example of

19

Background

each of these aforementioned N-Grams is explained on a sentence “The screen is red” as shown in
Table 2.

Table 2. N-Grams example

unigram ‘The’, 'screen’, ’is’, ‘red’
bigrams "The screen’, ‘ screen is‘, ‘is red’
trigram "The screenis’, ‘screen is red’

3. Skip-gram is a generalized form of N-Grams with a goal to discover word representations that help
in predicting words in the same context in the sentence, which incorporates data sparsity problems
[36]. The more data become available for the Skip-gram model, the more the information the model
can extract.

For example the sentences:

- "I have to return”

- "I have never had to return”

- "I finally have to return™

- "1 do not have to return™

All these sentences are grouped into the skip-gram "I have to return”, which means they have similar

shape.

Choosing the best techniques for feature extraction depends primarily on the problem domain, for example:
sentiment classification?> might give high performance if the features are extracted by using the Bag of Word
technique [32], while news classification using N-Gram technique could achieve better results [35]. Shortly,
the high-quality features means better results!

Feature Selection

Feature selection is the process of choosing only the most important features from the extracted features
[37]. This is performed by eliminating the redundancy and neglecting the less useful features, while keeping
the semantic unchanged [38]. In general, there could be millions of features, especially when working on a
huge amount of textual data, for example working on topics modeling [39], in which some texts are given and
then identifying what the topic of these texts is, or in another words: what the texts talking about. In Fig. 4, we

picture the feature selection concept.

Feature
Selector

S | | | |

Selected features

Bl - ENEN—

Extracted features

Fig. 4. Feature Selection workflow

2 Sentiment Classification (SC) is about assigning a positive, negative or neutral label to a piece of text based on its overall
opinion. [92]

20

https://en.wikipedia.org/wiki/N-gram#Skip-gram

Background

Applying feature selection has advantages like [40]:

1. Increasing the model prediction accuracy (by avoiding overfitting). Overfitting is a problem of getting
inaccurate prediction when testing the classifier. In this problem, the error rate of prediction increases in
the testing data set but decreases in the training data set. It happens when the size of the training data set is
too small compared with the complexity of classification model [41].

2. Reducing time cost to construct a model and speeding up the model prediction process.

3. Providing a deeper understanding of the process infrastructure that generated the data.

21

Related Work

3 RELATED WORK

In this thesis, we present an approach to automatically extract conceptual interoperability constraints, the
COINs, from NL text in APl documents via NLP and ML technologies. Many recent researches proposed
identifying specific types of constraints from API documentation in different ways. Therefore, in this chapter,

we describe briefly the similar works to our research.

Wau et al. [42] identified parameters’ dependency constraints from multiple library resources, mainly web
services and SDK documentation that are expressed in natural language. They proposed an approach called
INDICATOR (INference of Dependency ConstrAinTs On parameteRs) that collects information from API
documentation about operations’ definitions and parameters’ descriptions. Their approach has two stages: the
first stage is documentation analysis to extract only the constraints candidates, and the second stage is con-

straints validations, in which the final results are only the validated constraints.

Pandita et al. [43] proposed an approach to automatically infer the formal method specifications from nat-
ural text of APl documents. They introduced a new technique that assists client-code developers to correctly
use methods specifications in terms of method prerequisites, and what is expected after method is executed
(i.e., so-called pre-conditions and post-conditions). This approach helps to ensure a legal usage of code con-
tract to avoid inconsistency, misleading and prevent exceptions and bugs during code development cycle. The
idea of the approach is based on reading the whole method descriptions from API documents including: sum-
mary, argument description, return description, exception description, and remark description. Then, they use
a shallow parser to parse the specification in First-Order-Logic FOL [44] expressions, which are extracted
using natural language processing NLP Parser. NLP is used as a core-intermediator to analyze and process the

code-content and textual content to construct code-contract as a final result.

Zhong et al. [45] proposed an approach called Doc2Spec to recognize and infer resource specifications. In
particular, they developed a tool for Doc2Spec that is mainly based on linguistic analysis of the API Docu-
ments using natural language processing NLP techniques. The significant importance of their tool is to dis-
cover and extraction resources’ specifications as a first step and match them with the code-implementation as
a second step. The basic functionality of Doc2Spec is to detect both known and unknown bugs in code auto-
matically, which are the consequences of disregard API specifications or misused resources by developers.
For example: developer might not close resources properly after the end of their usage. Such tools can play an

essential role to avoid errors and refine code quality in implementation phase.

Dekel and Herbsleb [46] introduced an approach for improving AP1 documentation usability by extracting
and highlighting the important part of documentation, which includes the sensitive information, instructions,
and guidelines to push them into a programming IDE editor. They developed eMoose tool [46], which searches
and automatically tracks the content of several major APIs documentation to find the important hidden infor-
mation to assist developers. These information are called directives that hold method requirements and optimal
method invocations. eMoose offers to developers a list of method recommendations in terms of knowledge

items, constraints, method invocation dependency, and side effects based on the code context. This allows

22

Related Work

developers to work in a safe mode by protecting them against the risks of improper implementation. In addi-
tion, the tool increases developer’s awareness about the future problems by preventing errors, runtime fails, or
encountered code violations, which are potentially hard to predict during code implementation phase. Hence,

the tool positively affects software performance and consistency.

Some of the aforementioned approaches like Wu et al. [42] and Pandita et al. [43] used NLP with rule-based
identification, while Zhong et al [45] used ML to identify the name of the restricted entities, but not the re-
striction themselves. In our research, we elaborate on Abukwaik et al [1] idea of extracting different type of
conceptual constraints utilizing both NLP and ML technologies together. In addition, we extracted different
types of constraints as mentioned before (Not-COIN, Dynamic, Semantic, Syntax, Structure, Context and

Quality) constraints. In our research, we followed the empirical methodology [47].

23

Research Methodology

4 RESEARCH METHODOLOGY

In this chapter, we describe our research methodology, starting with the research methods in section “3.1
Research methods” Then; we define our research goals and questions in section ‘3.2 Goals and Research

Questions”.

4.1 Research methods

In this thesis, we followed an empirical-based methodology in exploring the potential of automating the
extraction of COINs from APl documents to support architects and analysts in performing their conceptual
interoperability task with the lowest cost possible.

The empirical research provides us with many advantages like allowing us to trace and verify the obtained
results between the research tasks and their results. Moreover, it enables other researchers to repeat measure

and extrapolate the results independently. Therefore, we performed our research in two parts as follows:

Research Part One (multiple-case study). In the first part of our empirical research, we systematically ex-
plored the nature of COINs in many API documentations to explore their current state in terms of their fre-
quently used terms and patterns. Accordingly, we manually built our COINs corpus that holds each investi-

gated sentence in the API documents along with its COIN class.

Research Part Two (ML for automatic COINs Extraction). In the next part of our research, we used the
results of the previous research task in directing our investigation about the capabilities of NLP (in representing
the observed patterns and rules obtained from analyzing the COINs) and the power of ML (in learning these
modeled patterns and rules towards full automation of identifying the COINs in text). Finally, with exploratory
experiments we evaluated the accuracy of our produced ML model. This helped us in deciding how useful our
automatic extraction idea for software architects and analysts in performing effective and efficient conceptual

interoperability analysis.

4.2 Goals and Research Questions

In fact, this work is extending the proposed idea of Abukwaik et al. [5] of automating the extraction of
COINs from their APl documentation. Hence, we formulated our main goal in terms of GQM-goal template

[48], which in turn supports the more comprehensive purposeful goals as the following:

— To: support the conceptual interoperability analysis task
— For the purpose of: improvement

— With respect to: effectiveness and efficiency

— From the viewpoint of: software architects and analysts

— In the context of: analyzing text in API documentation within integration projects

We translate this goal into the following research questions that we try to answer within our research:
o RQL1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the

NL text of APl documentation?

24

Research Methodology

Rational: This question aims at building an accurate Ground Truth (i.e. COINSs corpus) that represents the
first building block of our automatic extraction idea. To answer the research question we need to collect
adequate data manually (i.e., textual sentences from APl documents), then we analyzed it, and identified a
set of patterns and extraction rules for the found COINs. The metric we used for this research question are

frequent terms and sentence structures.

¢ RQ2: How effective and efficient would it be to use Natural Language Processing (NLP) along with Ma-
chine Learning (ML) technologies to automate the extraction of COINs from the text in APl documenta-
tions?
Rational: This question aims at tackling the challenges of extracting the COINs from NL text by building a
machine model for the COINSs to utilize it within already existing ML classification algorithms. The metric

we used for this research question are Accuracy, Recall, Precision, and F-Measure.

25

Research Part One: Multiple-Case Study

5 RESEARCH PART ONE: MULTIPLE-CASE
STUDY

In this chapter, we present the first part of our research starting with its design in section 5.1, in which we
defined a research method. Then we present the execution of our designed multiple-case study in section 5.2.
Then we discuss the results.

5.1 Study design (Holistic multiple-case study)

Study goal. The first part of our research has a goal of answering the first research question that we mentioned
in chapter 3, which is “RQ1: What are the frequently used patterns in specifying the conceptual interoperability
constraints COINs in APl documentation?”

In order to do so, we need to investigate the current state of COINs (in terms of representation, context and
recurring patterns) by exploring real-world APl documentation. This investigation facilitated discovering the
infrastructure of the building units, which help in finding out the representative terms, structure and patterns,
which is very important to be used in ML later on in the next chapter.

Research method. Accordingly, we decided to perform a multi-case study with literal replication of cases
from different domains. Such study allows us to recognize and perceive variety cases, with important evidence
to get with generalizable and more powerful results as drawn independently across replicated cases. Fig. 5

illustrates the Holistic multiple-case study and other cases types [49].

single-case designs multiple-case designs
CONTEXT CONTEXT CONTEXT
..................... < ! uu”"‘
1 Caso 3
holistic 2 ¢
(single- H <
unit of : ' CONTEXT CONTEXT
analysis) » e P B P
> . Cave Case
) '
y .
=77y CONTEXT ~ CONTEXT
CONTEXT Cane 3 Cane
sheseesenasve L T‘b::’;’: J sy 0 !":-::):‘.-'
Case L Andpas] =y
: 3 SE T k[E :
embedded] Ef&?“i’:’gfﬂ : P anpenz 3| [P sadisr
(multipte [|_Analysis 1 : CONTEXT ||| | coNTEXT |
units of E Embedded i 3 x,-.a.ca-.’:a i B .-‘015:4
tysi ; $ 3 . | 4 B " $
analysis) 1 Unit of : 3 Mw.':.'q‘n i Mt:':-': * i
Analysis2 13 | [| E | e
LTI TR RO . Aowiywa T : Acadyuis T

Fig. 5. Holistic multiple-case study [49]

Analysis unit. Our case study has a holistic design, which means that we have a single unit of analysis, which
is “the sentences that include COIN instances”.
Study protocol. Our multiple-case study protocol includes three main activities, which are case selection, case

execution, and cross-case analysis that we detail in the execution section 4.2 “Study Execution”.

26

Research Part One: Multiple-Case Study

Design of the data extraction sheet. We designed a “data extraction sheet” that we implemented as an MS

Excel sheet (see appendix 7.3). The extraction sheet consists of the following fields:

Sentence ID: it is an auto number; and each sentence has a unique number.

Sentence: the textual value of the sentence that we call the “unit of analysis”, which may include a COIN
instance.

COIN type: one of the classes of the conceptual interoperability constraints COIN: {Semantic, Dynamic,
Syntax, Context, Quality} and {Not-COIN}.

Source API document: to record the original APl document name.

5.2 Study Execution

In this section, we present the execution of our designed multiple-case study.

Case selection
We have chosen six APl documentations, which are: SoundCloud, GoogleMaps, Skype Instagram, Ap-
pleWatch and Eclipse-Plugin Developer Guide. We considered different characteristics and criteria for the

choosing like:

— Published statistics® on APl mashups score, which represents the API popularity in terms of API usage

by developers to build web services or even applications. As shown in Table 3.

Table 3. Mashups score of APl documentation

APl Documentation Mashups

SoundCloud 34
Google Maps 2580
Skype 30
Instagram 64

— API type: we select different API types in terms of web service and platform. Our selection was as the
following (Four AP1 documents from web services and two API documents from platform. Since, web-
services covers different services than the platform does.

— API domain: we also consider the diversity of the selected APIs document to cover different domains
such as social activates by selecting Instagram APl documentation, and from communication services,
we selected Skype, and from developing environment; we selected two different APIs, which are Ap-

pleWatch and Eclipse-Plugin Developer Guide).

Finally, we summarized our selection cases in Table 4. Which represent all APl domains and its API docu-
mentations, and for each APl documentation we added it API link in order to extract these document from its

source, as we will explain in next section Case Execution.

3 Programmable web: http://www.programmableweb.com/apis/directory

27

http://www.programmableweb.com/api/soundcloud
http://www.programmableweb.com/api/google-maps
http://www.programmableweb.com/api/instagram

Research Part One: Multiple-Case Study

Table 4. APl documentation's URL

API Domain Documentation Links to process
https://developers.soundcloud.com/docs/api/guide
SoundCloud
https://developers.soundcloud.com/docs/api/reference
Web-Service GoogleMaps https://developers.google.com/maps/web-services/
Skype https://msdn.microsoft.com/en-us/library/office/mt124991.aspx
Instagram https://instagram.com/developer
https://developer.apple.com/library/prerelease/ios/documentation/Gen-
AppleWatch eral/Conceptual/WatchKitProgrammingGuide/#//ap-
ple ref/doc/uid/TP40014969-CH8-SW1
Platform API
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.plat-
Eclipse -Plug-in Developer Guide | form.doc.isv%2Frefer-
ence%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html

Case Execution.

In this stage, we performed for each case the following three steps: data preparation, data collection, and data

analysis as shown in Fig. 6

1-Data
Preparation (Auto-

mated & Manual Filter-

ing)

2- Data

Collection

3- Data
Analysis

Fig. 6. Case execution process

1. Data Preparation

In this step, we started by fetching the APl documents from their online resources in order to process their

content, which means that we must a content with pure text data only. In our selected documents, we focused

on retrieving the parts or sections that were rich in the textual content about the conceptual interoperability

constraints. For example, the Overview, Introduction, Guide, API reference, and Summary webpages of the

documentation website. The final output of this preparation is a filtered text. Thus, we performed this prepa-

ration as the following into two procedures:

— Automated Filtering

28

https://developers.soundcloud.com/docs/api/guide
https://developers.soundcloud.com/docs/api/reference
https://developers.google.com/maps/web-services/
https://msdn.microsoft.com/en-us/library/office/mt124991.aspx
https://instagram.com/developer
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/#//apple_ref/doc/uid/TP40014969-CH8-SW1
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%2Fruntime%2FPlugin.html

Research Part One: Multiple-Case Study

We implemented a simple PHP code using Simple HTML DOM Parser 4 library to filter out the API
documentation from noise. (i.e., headers, images, tags, symbols, html and JavaScript code) and to keep
only the textual content. In our implementation, we pass an APl document link as input for the PHP
method in the abovementioned library as the following: file_get_html (link) and we get back the output
as a text content. Then, we keep the output as a text file to be manual reprocessed, as we explain in next
step (manual Filtering).

— Manual Filtering

The automated filtering described in the first process is limited to detect some usual and known patterns of
noise, which do not satisfy other noise cases like text mixed with pure code that occurs frequently in many
API documentations. There are also some irrelevant textual sentences that do not match our interest in
conceptual constraints and are hard to be filtered automatically (i.e., references like “see also” and “for
more information”, “copyrights”, “related topics”, “titles”, etc.). Additionally, such sentences could mislead
the machine learning in our later research steps. Therefore, we handled these sentences by filtering them

out manually for more relevant and accurate data.

2. Data Collection

In this step, we cut the textual input resulted from previous step into single sentences within the data
extraction sheet that we created according to the design we mentioned in section 4.1 Study Design. This
resulted in a structured and organized sheet (see the excerpt example of the sentence retrieval output in
Table 5).

Table 5. Data extraction sheet with example of collected data from 3 cases

API Document
Sentence id Sentence COINS Type
(case)

1 All images must reside in the Watch app bundle. AppleWatch

2 A user is encapsulated by a read-only Person object. Skype

3 All rate limits on the Instagram Platform are applied on Instagram
a sliding 1-hour window.

We filled the data extraction sheet gradually as we execute each selected case. That is, at the very beginning
we had only the sentences retrieved from the APl documentation of SoundClound case. After analyzing the

collected data [see section 2.3], we started the execution of the next case, prepared its data and retrieved its

sentences into the data extraction sheet and so on so forth.

Note: We developed a data storage, which is a local repository to store and organize all of the following data

e The original HTML pages of the pre-processed documentation
e The excel sheet for each case (each APl documentation)

e Other used artifacts (the links of the APl documentation)

4 Simple HTML DOM: http://simplehtmldom.sourceforge.net/

29

Research Part One: Multiple-Case Study

This storage has some advantages like enabling us to access the data sources without reconnecting to their
online sources and re-retrieving it from there. This guaranteed data consistency and independency. One re-
markable feature for this scenario is that, researchers can easily replicate and re-perform our study on the same
data. It is worth mentioning that, when we revisited the API documentation on their online sources, we noticed
that, there were some updates and removals in the contents, which means that, in the long-term a lot infor-
mation may be changed. Therefore, it would be an impossible task for future researchers to perform any kind
of replication for our research. Fig. 7 shows our data repository content within the preparation and the data

collection processes.

_>| HTML Content

Web-Browser]

Automated Filtering
(PHP DOM Parser)

API
Documentation Manual Filtering
URL l
<Input>
l | Raw Text |
Data Collection
Direct HTTP (extraction sheet)
Access
v ¥ v

| P URLs |HTML TXT XLS

Data Repository <Output>

Fig. 7. Data Storage along data preparation and collection

3. Data analysis

In this stage, we performed our content analysis method on the collected data from a case under execution

as we depict in Fig. 7 and explain in detail below.

Incremental building of the ground truth.

We manually investigated the meaning of each sentence collected in the data extraction and we checked if
it could be mapped to any of the classes covered by our interpretation criteria. This interpretation criteria is
the “Constraints of the COIN Model [1], which directs our decision about classifying each sentence as having
a COIN instance of a specific class (i.e., syntax, structure, dynamic, context, semantic) or as not having a
COIN instance at all (i.e., Not-COIN).

Obviously, this manual analysis took too much mental effort and time to analyze each of the 2283 sentences

that we have in our data storage. In fact, this is one of the most challenging phases of our research and it

30

Research Part One: Multiple-Case Study

represents a corner stone in our research. The result of this step in each case was an increment in our ground
truth (i.e., COINSs corpus), which we will adopt later in the second part of our research. Hence, this process
was performed by two researchers, each classified all sentences for each case separately (i.e., each sentence
was classified twice in a separated way). In multiple discussion sessions, the two researchers compared their
decisions; resolved conflicts based on consensus, and stored the classification decision in the extracted sheet.
We summarize our spent effort in manual filtering and classification tasks in terms of time per document as
shown in Table 6 and Fig. 8. Total effort in time with respect to the document size.

According to the information, we can easily conclude that there is a relation between the efforts in term of
time and the size of the documents being analysed. Hence, we can observe that Eclipse Plugin Dev documen-
tation has the largest size compared with the others. SoundCloud on the other side took much time compared
with its document size, because it is the first case study that we analysed, and we spend much time to record

the correct COIN type for each sentence.

Table 6. Total effort in time with respect to the document size

Total Document Sentence Classi- Total Total
API Document number of sen- manu:’al filtering e) efforts efforts
tences (Minutes) (Hours) (Minutes)

Sound Cloud 219 40 7 7.7 460
GoogleMaps 473 60 5.5 6.5 390
AppleWatch 360 60 7 8.0 480
Eclipse Plugin Dev 651 60 11 12.0 720
Skype 325 30 4 4.5 270
Instagram 253 20 4.5 4.8 290

Total 2281 ‘ 270 39 43.5 2610

800 B Total number of sentences B Total efforts (Minutes)

700

600

500

400

300

200

100 I

0
> o x o~ e
6000 . Q/@%Q Q§ 5 Q/Q\O\ ‘;{:\Q @oé,b@
> K & & N
>) G e <«

Fig. 8. Total effort in time with respect to the document size

31

Research Part One: Multiple-Case Study

Incremental identification of the COINSs’ patterns.

The final procedure in the case execution was manually analyzing its sentences that were classified as hav-

ing COIN instances, in order to identify the patterns and detection rules of each COIN class. In specific, we

investigated each sentence of the case and started taking our notes on any observed frequent occurrence of

words, sentence structures, or any other noticeable format. We were also looking for any correlation between

the sentences’ phrases for each COIN class. In addition, we stored these identified patterns into a different data

sheets as we will explain in more details in next section. Actually, we incrementally refined these patterns and

discovered more patterns as we execute each case. Fig. 9 shows the content analysis method ‘process flow’

that we followed in our research to identify the patterns and also to create the ground truth (i.e. corpus). While

Fig. 10 shows a snapshot of examples of the manual identification of the patterns in GoogleMaps.

Text of APl documents <Input>

Ground Truth
<Output> “COINs Corpus”
e A

Data Storage

Manually identifica-
tion of Patterns &

<Output> Detection Rules

Y

Patterns

Rules

Sentence 1

Sentence 2

Sentence n

Manually cat-
egorization

Constraints of
COIN Model [1]

———

Read sen-
tence j

Fig. 9. Content analysis method 'process flow'

detected Patterns

sentence : “ : 2 : z
Input/fOutput | explantion Conditional | Technical | Structure method call
statement | Terms Terms
These web services use HTTP requests to specific URLs, passing URL request HTTP
pEI'EI'HEtEFSESEI’gIJITIEI'ItStDthE sErvices.
For example,? is used within URLs te indicate the beginning of the
L For example query
query string;
When processing XML responges, you should use an appropriate 4
query language for selecting nodes within the XML document, Wwh XML nades,
rather than assume the elements reside at absolute posttions within =0 slement,
the XML markup. document
By default, XPath expressions match all elements. ®path | elements
This object can then process passed XML and XPath expressions XML,)
. object, evaluatel)
using the ewvaluate {} method. ®path

Fig. 10. Snapshot of the manual identification of the patterns

32

Research Part One: Multiple-Case Study

Cross-Case Analysis.

Ground Truth (COINs Corpus)
Two COIN Corpora. After executing all cases, we arranged the incrementally contributed ground truth
(i.e., COINs Corpus) into two different versions as the following:

o Seven-COIN corpus: in which, each sentence belongs to one of Seven-COIN classes (i.e., not-COIN, dy-

namic, semantic, syntax, structure, context, or quality).

e Two-COIN corpus: in which, each sentence belongs to one of two COINs classes so called: ‘Two-COIN’

instead of seven classes. That is, each sentence can be either a class of COIN (i.e.; dynamic, semantic,
syntax, structure, context, quality) or a class of not-COIN. In fact, the Two-COIN corpus is derived from
the Seven-COIN corpus by abstracting six of its classes into one class called 'COIN'. The aim behind de-
riving this new abstracted corpus is for later training of our ML model on two classes instead of seven, as
this would achieve better accuracy results (we explain this issue in details in chapter 5). Fig. 11 shows the
algorithm of creating the Two-COIN corpus from Seven-COIN corpus, while Fig. 12 shows the content of

each two corpora.

Algorithm 1: Create TwoCOINs Corpus

Data: Seven-COINs corpus
Result: Two-COINs corpus
1 SixClasses [] ={ ’semantic’,’dynamic’, structure’, syntax’,’context’,’quality” }
2 Corpus + ReadCorpus()
3 TwoCOINsCorpus + empty
4 foreach sentence € Corpus do
5 temp=sentence.class

6 if (temp € SizClasses) then

7 | sentence.class="COIN’

8 /fupdate the class of the current COIN
9 TwoCOINsCorpus.add(sentence)

10 return TwoCOINsCorpus

Fig. 11. Pseudo code of deriving Two-COIN corpus from Seven-COIN corpus

Y Y
N A N A
not-COIN

dynamic ||

semantic not-COIN
syntax

structure cou
context

aualitv

Seven-COIN corpus Two-COIN corpus

~.

Fig. 12. Seven-COIN corpus and Two-COIN corpus structure

Here, we explain an example of the results of the created Two-COIN corpus from Seven-COIN corpus using

the above mentioned algorithm as the following: Table 7 shows an example of the data extraction sheet of the

33

Research Part One: Multiple-Case Study

Seven-COIN as input Corpus, while Table 8 shows an example of the resulting data extraction sheet, which is

the Two-COIN Corpus as output.

Table 7. Example of the data extraction sheet of the Seven-COIN Corpus

Sen;‘.;.nce Sentence COIN Type API Document

1 AI.I rate limits on the Instagram Platform are applied on a sliding 1-hour not-COIN Instagram
window.

2 When it is finished manipulating the object, it releases the lock. dynamic Eclipse

3 A user is encapsulated by a read-only Person object. structure Skype

4 indoor indicates that the calculated route should avoid indoor steps for syntax Google-MAP
walking and transit directions.

5 the connection ids can be used to share tracks and playlists to social net- semantic SoundCloud
work.

6 Directions may be calculated that adhere to certain restrictions. context Google-MAP

7 your interfaces need to display information quickly and facilitate fast quality AppleWatch
navigation and interactions.

Table 8. The data extraction sheet of Two-COIN
Sentence
id Sentence COIN Type API Document

1 AI.I rate limits on the Instagram Platform are applied on a sliding 1-hour not-COIN Instagram
window.

2 When it is finished manipulating the object, it releases the lock. COIN Eclipse

3 A user is encapsulated by a read-only Person object. COIN Skype

4 indoor indicates that the calculated route should avoid indoor steps for COIN Google-MAP
walking and transit directions.

5 the connection ids can be used to share tracks and playlists to social net- COIN SoundCloud
work.

6 Directions may be calculated that adhere to certain restrictions. COIN Google-MAP

7 your interfaces need to display information quickly and facilitate fast COIN AppleWatch
navigation and interactions.

Case-share of sentences in the Ground Truth (COINs Corpora).
We have summarized this information in Table 9, which shows the number of sentences collected from each

case.

Table 9. The distribution of APl Documentation

APl Domain Documentation # Sentences
SoundCloud 219
Web-Service GoogleMaps 473
Skype 325
Instagram 255
AppleWatch 360
Platform API
Eclipse-plugin 651
Total 2283

In Table 9, we can see that, the less number of sentences belongs the SoundCloud API documentation,

because this documentation has some limitation of the offered services compared with other services like

34

Research Part One: Multiple-Case Study

GoogleMaps or even AppleWatch. We also observed that the maximum number of the sentences obtained
from Eclipse-plugin, obviously its APl documentation is very huge, because there are many methods used for

developing plugins inside eclipse platform.

COIN-Class share in the Ground Truth (COIN Corpora). The COIN-class (e.g., Not-COIN, dynamic,
semantic, syntax, structure, context, and quality) is distributed over the Ground Truth in the COIN corpora
non-equally. There are some classes like not-COIN, dynamic, semantic contribute of the majority of the
COINSs which is 91% of the total classes. For example, we observed that the Not-COIN class constitutes
about 42% of the total classes, while the dynamic class constitutes about 25% and the semantic class con-
stitutes about 24% of the total classes in the Ground Truth (COIN Corpora). On the other hand, we observed
there are a few contribution of the other classes like (structure, syntax, quality and context). They comprise
together about 9% of the total classes. These statics are illustrated in Fig. 13. While, Fig. 14 demonstrates

the distribution of COIN-Classes in the second corpus (Two-COIN corpus).

5% 2%
: m Not-COIN
m Not-COIN
= Semantic
m Dynamic
B COIN
Structure
o Syntax
m Context
m Quality
COIN category |# No. of instances
COIN category | # No. of instances Not-COIN 960
Not-COIN 960 COIN 1323
Semantic 548
Dynamic 570
Structure 107
Syntax 57
Context 13
Quality 28

Fig. 13. Seven-COIN instances distribution Fig. 14. Two-COIN instances distribution

COIN-Class share in each case. We have deeply investigated this information and documented the results as
shown in Table 10 and Fig. 15. These statistics reveal much information about the structure of each API doc-
ument. We mean by structure is the contents of each APl documents in terms of COINs types (e.g. Not-COIN,

dynamic, semantic, structure, syntax, context, quality).

35

Research Part One: Multiple-Case Study

Table 10. COINs classes distribution per each case

COIN Type Not-COIN dynamic semantic structure syntax context quality
SoundCloud 46.1% 26.9% 18.3% 4.6% 3.2% 0.9% 0.0%
Google Maps 63.0% 11.2% 13.1% 1.7% 6.6% 2.1% 2.3%
AppleWatch 40.8% 26.1% 25.0% 6.1% 1.1% 0.3% 0.6%
Eclipsse-plugin 29.0% 32.4% 30.1% 6.5% 0.9% 0.0% 1.1%
Instagram 41.6% 29.8% 25.1% 2.0% 0.0% 0.0% 1.6%
Skype 36.6% 23.7% 29.5% 6.2% 2.8% 0.0% 1.2%
Grand Total 42.0% 25.0% 24.0% 4.7% 2.5% 0.6% 1.2%

350
300
v 250
=z M context
@]
&g 200 m dynamic
b H not-COIN
2 150
§ H quality
Z 100
B semantic
50 I I I I W structure
0 - I_ - I- | | -I - - II - II- W syntax
X RS & Q & RS
& S ® & o P
& QIQ g a,@ Q>
QQ\ & S A o"{\
v <<,Q\\Q o« e

Fig. 15. Cases distribution over COINs

36

Research Part One: Multiple-Case Study

COIN patterns

“RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINs in the
NL text of API documentation?”

What is patterns?

First, we define patterns as any frequent used of both terms and sentence structure. More specifically, a
frequent term is any word is a used repeatedly in some sentences and occurs normally individually (single
word per single sentence), for example the terms XML, iOs, XPath, HTTP, etc. are words used many times
in different sentences in some COINSs classes like Not-COIN class. While, sentence structure is more specific
terms than just single term in a sentence. They constitute the formation/construction of a sentence, for example
there are sentences begin with the phrase “if” and the clause “, then”. Another example some sentences begins
with pronouns like “You’ and followed by ‘Modal Verb’ like you must or it must or we must, etc. these kinds

of patterns we define them as sentence structure, because they are not a single term.

After collecting the data and classifying it for each case, we focused on identifying the significant patterns
of the text that would put us on the right road towards machine automated identification of COINSs in text on
behalf of human architects and analysts. As we mentioned earlier in section 4.2 that the analysis process was
performed in a gradual manner (i.e., case after case). In each case, we extracted the noticed patterns for each
COIN class.

Having this being said, in this cross-case analysis, we studied the textual content of all cases that is gathered

within the Seven-COIN Corpus more deeply and carefully. That is, we mined the content of the corpus sen-
tence by sentence and word by word. The more data we studied, the more patterns (terms and sentence struc-
tures) we discover, since every case study has different aspects and conceptual constraints.
Such a work is a tedious manual task that took us about 20 days and 8 hours per a day to accomplish. Some
sentences required us to read them more than once to comprehend the accurate meaning first, and then extract-
ing the cross-case patterns, proportional relationships, and similarities. This cross-case analysis helped us to
refine our identified patterns. In the other words, the more COINs we include in the cross-case analysis, the
more accurate and significant patterns we discover.

— Finally, we created a list of the top used terms in each class as shown in Table 11. For a complete list of

the most frequently used terms per each class, please see appendix (B. Top frequently terms), which we

created during our analysis process.

Table 11. Top 5 terms are frequently used per each class

Dynamic Semantic Structure Context Syntax Quality
job user interface direction calculate user
user plug content time-share route direction
app app app available indicate provide
client provide contain bicycle specify access
interface platform collection drive user api

37

Research Part One: Multiple-Case Study

It is important to mention that, we focused on identifying patterns for three COIN classes (i.e., Not-COIN,
dynamic, semantic). This is simply because they have the three biggest shares of sentences in the Seven-COIN

corpus. In total, these three classes constitute about 91% of sentences in the corpus as shown in Table 12.

Table 12. Total Ratio of the majority COINs

COIN Type Ratio

Not-COIN 42.0%
Dynamic 25.0%
Semantic 24.0%
Total 91.0%

Next, we show our identified patterns for these three classes with detailed examples. Note: For all three classes

we created a table, in which we highlighted the detected pattern in red color within the example.
Patterns of the Not-COIN class. In this class, we observed the following patterns:

— Frequent terms: The predominant part of terms in this class are the Technical Keywords, which are

mainly abbreviation of technical terminology and programming keywords. For example (XML, iOS,
XPath, JavaScript, ASCII, KB, MB, etc.). In our corpus there are about 30.7% (of the Not-COIN class)
has technical keywords. This means that, there are about 295 COINs of 960 COINs have one or more
technical term (see Table 13 the first row).
For further clarification, Table 13 is composed from five columns. First columns is a pattern type (e.g.
frequent terms or sentence structure). Second column is a pattern name (e.g. technical keywords, sen-
tence begin with some term, sentence contains some terms, etc.). Third column is example of the pattern
term. Forth column is a real example from the corpus, Fifth column is the total number of the occurrence
of the pattern in the corpus with respect to the COIN class and last column is the percentage of the
occurrence of the pattern in the corpus with respect to the COIN class. Note that in the fifth column the
cell values do not add up to 100% as there are minor patterns that take a share of it but we do not cover
them in the table.

— Sentence structures: the second part of the patterns are sentence structure, as aforementioned these struc-
tures are illustrated as shown in all rows of Table 13 except the first row.

In this regard, we observed that, there are relatively two significant patterns in this class, which are:

= Sentences contain variables, symbols and tags. For example a sentence “XML responses consist of

zero or more <route> elements.” It is classified as Not-COIN, as you can see contains some tags
and technical terms. Such tags and the special characters like /°,’\’,’<’,”>’ constitute 13.9% from
the whole not-COIN class.

= Sentences begin with the terms, like “for example”, ” for information” and sentences contains terms

like “see”, “learn”, “let’s” all together constitute 12.8%.

38

Research Part One: Multiple-Case Study

Pattern Type

Frequent
Terms

Pattern
Name

Technical
keywords

Table 13. Identified patterns of Not-COIN class

Example

XML, iOS, XPath,
JSON, 0SGi, SDK,
HTTP, GET, POST,
etc.

COIN with pattern example

these resources can be accessed
and manipulated using the HTTP
methods GET, POST, PUT and
DELETE.

COINs
count

295

COINs %

30.7%

Begins with

for example

for example, a user may enter an
address as '5th&Main St.'

for information

for information on how to present
new interface controllers, see inter-
face Navigation.

For more information about notifi-
cation payloads, see Specifying a
Notification Payload for Testing.

contains

see

for a full list of properties that can
be set on a sound resource, see the
/tracks endpoint reference.

See Transit Details below

See also: /me endpoint reference
documentation.

Learn

Learn how to get a key.

let’s

Let's look first at the scopes defined
by the platform runtime:

123

12.8%

the following

Currently the following activity
types are supported:

62

6.5%

Begins with

figure shows

Figure shows the default JSON file
that comes with your project.

10

1.0%

Ends with

: as follows

the help command supports -scope
argument, which should be used as
follows:

85

8.9%

Contains

variables names

’

path tags: /', '<',">'

Neither requires an access_token or
client_id.

133

13.9%

Patterns of the dynamic class. In this part, we extracted the most used patterns in terms of terms and

sentence structures.

— Frequent terms: during our studying and analysis of the dynamic COINs, we observed that, this class
contains many activities, events that depict the data and process flow, and commands to perform direct
tasks or activities. Therefore, we came up with a special list of terms and we called it “Action Verbs”.
Example of these verb terms includes but not limited to (create, use, access, request, etc.). Actually, they
represent about 35.8% of the total number of sentences with dynamic COINs. This means that, there are
204 COINs from 570 COINs have at least one or more Action Verb. See Table 14 (first row). We also

provide a complete list of the Action Verbs in the please see appendix (B. Top frequently terms).

39

Research Part One: Multiple-Case Study

— Sentence structures: as we explained in the beginning of this section, the sentence structures belong to

different terms. This class has specific patterns in terms of conditional statements, method call, and var-
iables. See Table 14.

Pattern
Types

Frequent
terms

Pattern Name

Action Verbs

Table 14. Identified patterns of Dynamic class

Example

create, use, request, access,
plug, lock, include, set-up, run,
start ,call-up ,redirect. Please
see the Action Verbs list in the
appendix for more details.

COIN with pattern example

instead, create a complementary experi-
ence to your iOS app.

COINs
ount

204

COINs %

35.8%

Sentence
structures

Begin with
Conditional state-
ment

if , when, once, while, as long as
,unless

if a command name is specified, the help
message for this command is displayed

note that as long as the sound is public,
you will only need to provide a client_id
when creating a client.

once the state is finished it is ready to be
embedded or streamed.

when building a valid URL, you must en-
sure that it contains only those charac-
ters shown above.

while it owns this rule, it is only allowed
to modify files within that directory sub-
tree.

Unless otherwise stated, the values null
and the empty string are equivalent to
omitting the property.

137

24.0%

Contains
Conditional
statement

if , when, once, while, as long as
,unless

the request may succeed if you try again.

this feature is available only when con-
necting through telnet or ssh.

you should exercise extreme caution
when acquiring and releasing scheduling
rules using such a coding pattern.

100

17.5%

Begin with

You + Modal Verb (e.g must,
have to, should , will, may, can)

you can follow a user using the /me/fol-
lowings endpoint.

34

6.0%

40

Research Part One: Multiple-Case Study

you must have an existing iOS app to cre-
ate a Watch app.

you should now store the access token in
a database

imperative(commands verbs)

click the Store icon to navigate to the
Skype client s entry.

Build a dynamic view of a user s person
list with content from the Groups collec-
tion.

19

3.3%

e.g. (to+verb ... , verb)

to end a subscription, call the subscrip-
tion.dispose method.

to create a new notification interface,
drag a notification interface controller
object to your storyboard file

22

3.9%

Method call

1. call, invoke, use
method/function.

3. function expression e.g.

get(),set(a)

you create sets using our API by creating
a client and calling the post method with
the /playlists endpoint and information

about the set, including a list of track ids.

68

11.9%

Contains

After/Before as connector

after a job finishes running, its reference
to the progress group is lost.

the setuser call must also be made be-
fore the job is scheduled.

37

6.5%

Begin with

note(that)

note if you are going to stream from our
API you need to attribute properly.

note that in this case, object_id is the tag
to which you would like to subscribe.

16

2.8%

Contains

via/through

this feature is available only when con-
necting through telnet or ssh.

20

3.5%

Contains

Variables names: "_’, /'

Some API only require the use of a cli-
ent_id.

you can also optionally include a
transit_mode and/or a transit_rout-
ing_preference.

38

6.7%

41

Research Part One: Multiple-Case Study

Patterns of the semantic class. In semantic class, we observed different kinds of terms and sentence struc-

tures. Table 15 explains these observed patterns with examples as the following:

- Frequent terms (first three rows in Table 15): In this class, we classified some frequent terms into

three different lists as the following: Output/Input verbs, Supporting verbs, and Admission verbs. See

Appendix (Table 34. Output/Input verbs, Table 35. Supporting verbs and Table 36. Admission verbs).

The total summation of these patterns equals (103+90+74=267), which constitute 48.7% of the over-

all semantic class.

- Sentence structures (all rows in Table 15 except the first three columns). In which there are sentences

contains some structure like the sentence contains “by” and followed by “Gerund”, or there are sen-

tences begin with “for” and followed by “Noun” or “Gerund”. As another example, there are sen-

tences contains “so that”, ”because”, ”’in order to”.

CEINED)

Table 15. Identified patterns of Semantic class

Pattern Pattern) COINs
Example COIN with pattern example COINs %
Type Name count
Thus the help command will display help
only for the commands with the specified
return, receive, display, response, scope.
Output/Input send, notify retrieve, select, read, re-
103 18.8%
verbs cover, access, fetch, upload, down-
load, submit, recall, share, result
Frequent A dynamic notification interface lets you
terms Supportin subport. provide. Suggest. give. bro- provide a more enriched notification ex-
PP & upport, p » SUBBESL, give, p perience for the user. 90 16.4%
verbs pose.
The console allows custom command
Admission allow, enable, admit, let, give, grant, | completers to be provided.
permit, facilitate, authorize, prevent, 74 13.5%
verbs .
stop, avoid
Action buttons save time for the user by
offering some standard responses for a
) notification.
Contains by + {Gerund} 29 5.3%
For remote notifications, add the title
key to the alert dictionary inside the pay-
Begin with for + {Noun or Gerund} load. 7 1.3%
Sentence
structures Eclipse provides a common user inter-
face (Ul) model for working with tools.
Contains for + Noun/Gerund The plug-ins that make up a subsystem 30 5.5%

define extension points for adding be-
haviour to the platform.

42

Research Part One: Multiple-Case Study

You can search for directions for several
modes of transportation, include transit,
driving, walking or cycling.

Begin with

if you+...., will + (be) / you can

if you want to load the library separately
from the HTML code, you can call the
oEmbed endpoint with the omitscriptpa-
rameter.

13

2.4%

in (that)(this) case

In that case, the platform uses some heu-
ristics to determine which one should be
selected.

0.7%

it + modal verb + (be)

It should be stable enough so that indus-
trial strength tools can build on top of it.

0.9%

note(that)

note: Tapping your app s glance interface
always launches the app.

1.5%

(to+verb)...... , verb

to embed instagram content you need to
first visit the post on the web and get the
embed code.

1.3%

(use)(using) + + to

use promise chaining to prevent applica-
tion logic from changing the state of an
object until the object is initialized and
ready

26

4.7%

when

When configuring the interface, specify
the JSON data file containing the test
data you want delivered to your inter-
face.

12

2.2%

you can, you could

you can cancel a presence subscription
for a given person at any time.

29

5.3%

Contains

in order to, so that, because

Many developers use this flow because
of its convenience.

it should be stable enough so that indus-
trial strength tools can build on top of it.

we will gloss over a lot of details in order
to get the plug-in built and running.

16

2.9%

(user)(you)(we) + modal verb

With a dynamic interface, you can dis-
play more than just the alert message.

37

6.8%

43

Research Part One: Multiple-Case Study

5.3 Discussion

After we reviewed the results and statistics from table (Table 13. Identified patterns of Not-COIN class,

Table 14. Identified patterns of Dynamic class and Table 15. Identified patterns of Semantic class) which

contains the frequent patterns in the sentences and the ratio of each pattern that occurs in each COIN class.

(Not-COIN, Dynamic and Semantic) classes. Thus, we observed that, our Seven-COIN Corpus has imbalance

amount of sentences from each COIN class as the following:

The majority of the COINs about 34.4% of the total COINSs are classesified as not-COIN class, the reason
is because there are many technical description and many technical terms used in the APl documentation.
The minority of the COINs are classesified as (context, structure, syntax, quality), because these kinds of
COINs describe the service usage context, terminology definitions or quality attributes of services or sys-
tems, which are rarely mentioned in the APIs.

COINs of type (dynamic and semantic) are distributed equally. The dynamic class has a ratio of 28.3%,

while the semantic class is about 27.4% from the whole COINs.

The second observation is that: the statistics in (Table 10. COINSs classes distribution per each case) reveals

very important information about the COINSs distribution over each case study. For example:

e SoundCloud: is easy to read and to find out the conceptual constraints. Most of the sentences in the API

documentation are short and direct to understand, which does not confuse the reader to extract any of the
COINSs. In addition, this documentation has a small size compared with the other AP1 documentation in our
corpus.
The GoogleMaps APIs has the majority of not-COIN class of 298 from the total number of GoogleMaps
COINs which are 473, which means there are more than 62% of the COINs in GoogleMaps are only belongs
not-COIN class. And this is very huge ratio compared with its COINSs size and also with the other cases.
This is because the GoogleMaps APl documentation has a lot of technical terms. Moreover, there are few
concepts, background paragraphs. GoogleMaps APIs seems to be more technical than conceptually.
Eclipse-Plugin has a balanced COINs distribution, especially for (not-COIN, dynamic, semantic). In addi-
tion, it has the highest number of COINSs of type structure of 42 COINs. Therefore, we can conclude that,
these balances are due to many reasons:

o Eclipse-Plugin is the largest APIs we extracted and it contains 651 COINS.

o Ithas many sections for describing the concepts and the abstract level of knowledge, such as: abstract,

introduction, and overview section.

o It has less technical information.
AppleWatch: has very well structural paragraphs, even it is long documentation, but it is easy to track and
read. In addition, this documentation has three main classes. These are, Not-COIN of 40.8%, Dynamic of
26.1% and Semantic of 25.0%.

44

Research Part One: Multiple-Case Study

5.4 Threats to validity

Generalizability

To avoid having results applicable for one case of APl documents and to make our findings generalizable,
we decided to include multiple cases in our search for the COIN patterns in textual sentences. That is, we have
chosen six APl documentations, which are: SoundCloud, GoogleMaps, Skype, Instagram, AppleWatch and
Eclipse-Plugin Developer Guide. Moreover, we have collected data from another APl documents which is
from Amazon Storage Service S3, but unfortunately, we ran out of time to analyze it, although we have pro-
cessed it. In general, we have covered 2283 sentence from the six cases, which gave us a good impression of

the typical amount of COINSs as well as their distribution in the APl documents.

Completeness

Due to time limitations, we were unable to analyze a large number of APl documents despite of its promi-
nent role in finding out more patterns. However, we have selected inclusive parts of the large APl documen-
tations (e.g. in the API document of Eclipse, we covered the Plug-in part that has about 651 sentences).

In fact, manual processing of data takes a very long time, and the reason behind that is due to the need firstly
to cleaning data from noise (such as images, tables, symbols, etc.) and then organizing paragraphs into short
sentences, and after that we analyzed these sentences manually to extract patterns, which we build the rules
based on it, then we fed it up to the classification model. The accuracy of the automated classification model
affected significantly by the quality and quantity of this data.

Researcher bias

In this thesis, we built our corpus in a way that guarantees results accuracy and impartiality. Accordingly,
the manual classification process. The manual classification process is a process of identifying the proper
COIN class (i.e. Not-COIN, Dynamic, Semantic, Syntax, Structure, Context and Quality), which is performed
through a manual labor by reading the sentence and understand the meaning using of the Constraints of COIN
Model [1]. Understanding the sentence correctly plays an important role in determining the right COIN class,
and that the
In our research, the manual classification process was performed separately by two researchers from the Soft-
ware Engineering Research Group (AGSE) of University of Kaiserslautern. Each researcher classified the
retrieved sentences from the API documents independently. Our process flow for the document classification

is shown in Fig. 16

45

Research Part One: Multiple-Case Study

& Uncategorized Manual Classified | Agreed |
document Categorization Document Categorization
<Input>
Researcher 1 Constraints of @
COIN Model Not agreed
<categorization Categorization
criteria>
Discussion &
Uncategorized Manual Classified resolution
document >\ categorization Document |
<Input>
Researcher 2 \ 4
Final Categorized
Documents
<Output>

Fig. 16. The classification process performed by two different researchers

The classification processes were performed in four stages as the following:

First: Both researchers started classifying the sentences of each API documents based on the COINs sheet

model [1] as shown in Table 1.

Second: After classification and in multiple discussion sessions, the researchers compared their classifica-
tion decisions. For conflicting classifications, they created a "non-agreed list” to be re-discussed and re-clas-
sesified later and continued comparing the rest of the COINs and kept them in an "agreed list". Then, the
researchers revisited the "non-agreed list", discussed and resolved based on consensus.

We evaluated the accuracy of this process by using agreement percentage [50], which was almost 75%.

Agreement Percentages is shown in We evaluated the accuracy of this process by using agreement percent-
age [50], which was almost 75% that we obtained using the following formula:

Na

p, =
A7 NAi+Np

X 100 Q)

Where P refers to the percentage of agreement, Na the number of agreements, and Np No the number of
disagreements [50].

Third: Collecting the final classified document into one final data sheet, that was the input for all the later
analysis activities. It was used to discover the patterns as we described previously in section 5.2 and was used

to feed up our ML model as we explain later in the next chapter.

46

Research part two: Automatic identification of COINs using ML and NLP

6 RESEARCH PART TWO: AUTOMATIC
IDENTIFICATION

In this part of our research, we aim at answering the second research question, which is:
“RQ2: How effective would it be to use Natural Language Processing (NLP) along with Artificial Intelligence

(Al) technologies to automate the extraction of COINs from API documentation?” Please see

Fig. 17.
‘ COINs Manual Construction Set of Feature
Corpus of Rules features modeling

.
Feature model
Classified | ML cllass_lﬁer of COINs Corpus”
testing subset) Eva uat_lon_) Training Testing
by Cross-validation subset subset

Fig. 17. 'Process Flow' of the first machine learning classification approach

To achieve this, we used two different approaches to investigate the potentials of using technologies from
machine learning and natural language processing. The first approach is Rule-based classification system using
NLP with ML. While, the second approach is ML classifiers using Bag-of-Words model.

In this chapter, we explain each approach in details showing the exploratory experiment configuration,

execution, and performance results in terms of accuracy.

6.1 First Approach: Rule-based Machine Learning Classification

Within this approach, we aimed at investigating the benefits of utilizing our manually identified patterns
through NLP technologies in extracting the representative features of the textual sentences in the COIN Corpus
as a matrix of attributes. For this goal, we adapted and extended our discovered patterns (which we observed

in our multi-case study) into rules that we could use for training a machine learning model.

Rule construction using NLP

As we mentioned earlier, we identified the frequently used terms and sentence structures for the main three
COIN classes (Not-COIN, Dynamic, and Semantic).

In this class, we observed the following patterns:

Frequent terms: The predominant part of terms in this class are the Technical Keywords, which are mainly

abbreviation of technical terminology and programming keywords. For example (XML, iOS, XPath, JavaS-

47

Research part two: Automatic identification of COINs using ML and NLP

cript, ASCII, KB, MB, etc.). In our corpus there are about 30.7% (of the Not-COIN class) has technical key-
words. This means that, there are about 295 COINs of 960 COINs have one or more technical term (see Ta-
ble 13 the first row).

For further clarification, Table 13 is composed from five columns. First columns is a pattern type (e.g. fre-
quent terms or sentence structure). Second column is a pattern name (e.g. technical keywords, sentence begin
with some term, sentence contains some terms, etc.). Third column is example of the pattern term. Forth col-
umn is a real example from the corpus, Fifth column is the total number of the occurrence of the pattern in
the corpus with respect to the COIN class and last column is the percentage of the occurrence of the pattern
in the corpus with respect to the COIN class. Note that in the fifth column the cell values do not add up to

100% as there are minor patterns that take a share of it but we do not cover them in the table.

Sentence structures: the second part of the patterns are sentence structure, as aforementioned these structures

are illustrated as shown in all rows of Table 13 except the first row.
In this regard, we observed that, there are relatively two significant patterns in this class, which are:

Sentences contain variables, symbols and tags. For example a sentence “XML responses consist of zero or
more <route> elements.” It is classified as Not-COIN, as you can see contains some tags and technical terms.

Such tags and the special characters like /°,’\’,’<’,”>" constitute 13.9% from the whole not-COIN class.

Sentences begin with the terms, like “for example”, ” for information” and sentences contains terms like

133

see”, “learn”, “let’s” all together constitute 12.8%.

We improved and reformulated these observed patterns. That is, we involved a wider range of terms and
sentence structures by utilizing both the observed (terms, patterns and rules in the multi case study) and the
“Constraints of COIN Model”. Based on this, we constructed the rules needed in the Rule-based classifica-
tion approach. This rule construction was performed by utilizing NLP techniques (i.e., sentence tokenizing,
stemming, stopwords removal, part of speech recognition, N-Grams). In our research, we used NLTK (i.e., a
leading platform for building Python programs to work with human language data). Table 16 summarizes
our rules with examples for more than 13 rules, but we described the most 13 significant ones, and these
rules are (Definition, Goal, Conditional, Explanation/Example, Method Call, Modal Verb, Resource, Struc-

ture, Technical Term, Variable, Warning, Output/Input and Action Verb)

48

Research

#

SN

(o)}

9
10
11
12
13

1-

part two: Automatic identification of COINs using ML and NLP

Table 16. Rules Names with examples

Rule name Example of sentences satisfying the rule

Definition oEmbed is an open standard to easily embed content from oEm-
bed providers into your site

Goal Background actions launch the containing iOS app in the back-
ground so that it can process the action

Conditional if a command name is specified, the help message for this com-
mand is displayed.

Explanation/Example for example, you can use this to protect against CSRF issues.
Method Call in order to embed a player widget using JavaScript SDK, you can
call SC.oEmbed() function

Modal Verb you can also get a list of comments for a specified sound

Resource artifacts for each tool, such as files data, are coordinated by a
common platform resource model.

Structure Fundamentally, a bundle is just a collection of files (resources
code) installed in platform

Technical Term instead, create a complementary experience to iOS app.

Variable Some API only require use of a client_id.

Warning do not assume access_token is valid forever.

Output/Input on success, function returns true.

Action Verb to perform a task, a plug-in creates a job then schedules it. // see
Appendix

Definition: This rule is implemented to check the sentence grammar or structure looking for defini-
tions. This rule extends the linguistic rules that are stated in [51], to cover more cases that what we
observed in our multiple-case study. For instance, we included additional patterns for sentences in-
cluding definitions like “is called as”, “is known as” and “is declared as™. This rule is mapped to
Syntax COIN.

Goal: We established some rules to discover if a sentence is stating a goal. For this purpose, we
implemented a method that utilized NLTK® & Python®. For example, a sentence that contains terms
like: (so that, in order to, to +verb + any word(s) +°,” + any verb, etc.). This rule is mapped to Semantic
COIN.

Examples: a sentence: “a client must have a user_name and a password in order to log in to the
server”.

Conditional Statement: This rule detects the preconditions by checking if the sentence begins with
a conditional clause that starts with like (if, when, once, while, until) and its other clause begin with
¢,> + then. This rule is mapped to Dynamic COIN.

Explanation/Example: This rule detects if the sentence contains some kind of further explanation or
examples. There are special words that we observed them to be used in such statements like: for

example, as an example, for instance, etc. This rule is mapped to Not-COIN.

5 NLTK is a leading platform for building Python programs to work with human language data. http://www.nltk.org/

6 Python i

s a programming language developed under an OSl-approved open source license, making it freely usable and

distributable. https://www.python.org/about/

49

Research part two: Automatic identification of COINs using ML and NLP

5-

10-

11-

12-

13-

Method Call: This rule aims at discovering the statements that has function calls. We developed a
regular expression rule to detect if the sentence contains a function signature (e.g., Class.setText())
or some keywords (e.g., call, invoke, function, method, etc.). This rule is mapped to Dynamic COIN.
Modal Verb: This rule aims at detecting modal verbs from the sentence. This rule is mapped to
Dynamic COIN.

Resource: This rule aim at detecting statements about required resources to use a function. We de-
fined a list of keywords, which are used to indicate resources words. Some instances of these key-
words in our list are (access, client, file, network, disk, and more.) This rule is mapped to Dynamic
COIN.

Structure: This rule aims at finding any structure design decisions declared in the textual sentences.
Hence, we created the list of top 500 keywords for this rule based on the terms of the “Data Structures
and Algorithms in Java, 6th Edition” [52]. These keywords list include (e.g., database, inherit, over-
ride, implement, extend, etc.). This rule is mapped to Structure COIN.

Technical term: This rule aims at detecting technical terms like any keywords looks like abbreviation
such as (XML, XPath, SQL, SSL, etc.). For this purpose, we use a regular expression (e.g., word with
all capital letters or/and words with short characters and capitalized like ABC, SSL, etc.). This rule
is mapped to Dynamic COIN.

Variable: This rule aims at finding any variable in the sentence. This rule is developed by using
regular expression, in which a given sentence is checked whether it contains any word represents a
variable (i.e. client_id, _parameter, user_name, etc.). This rule is mapped to Dynamic COIN and Not-
COIN.

Warning: This rule aims at detecting sentence that contains warning statements (i.e. take care, pay
attention, be aware, be careful, etc.). In this case, we defined a list of terms that contains similar
meaning of warning. This rule is mapped to Semantic COIN.

Output/Input: The rule aims at detecting the activities of type input or output. We developed a
method to check our predefined list, which contains keywords like (return, output, display, throw,
etc.). This rule is mapped to Semantic COIN.

Action verb: This rule is used to detect action verbs that describe activities (which we noticed to
appear frequently in Dynamic COINs. For this purpose, we defined a list for these verbs (i.e. run,
complete, open, process, start, etc.). For complete information about the Action Verbs, please see

Appendix (Table 33). This rule is mapped to Dynamic COIN.

Exploratory Experiment

After having our rules ready, we conducted the exploratory experiment to see the potential that Rule-based

classification can bring to our goal to automate extracting the COINs from APl documents. We performed this

experiment in two phases as the following:

Phase 1: Preparing the training data set. We aim by this phase at generating a data set to be fed back as a

training set to the classification model, which in turn, train on it and later on predicts the right COIN Type.

Bellow, we describe the process of this phase as the following:

Input: The Seven-COIN corpus

50

Research part two: Automatic identification of COINs using ML and NLP

Process:

- For each sentence in a corpus
1- If the rule is satisfied by a sentence, then the method for that rule return 1,
2- Otherwise return 0.
However, in some cases, methods might return integer value greater than 1, which is a summation
of how many times the term in a sentence occurs. For example: in case of the rule “Technical
Term”, the method is developed to scan the sentence and return the total number of technical terms
(i.e. SQL, XML, iOs, etc.), which can be any number greater or equal to 0.

Output: The result of this phase is a matrix of rules and sentences.

This means, for each sentence it gets a score for each of the rules as seen in Fig. 18, which shows the
snapshot of only the first 8 rules of the matrix for seven sentences.

Conditional |Explanation,
Sentence Definition | Goal - / Method Call | Modal Verb | Resource | Structure
Statement Example

a user's availability can be
free and their activity can 0 1 0 0 0 0 0 0
Because this authorization
flow depends on passing a
set of user credentials, it 1] 1 1] 1] 1 0 2 0
Depending on your needs,
you can embed a player

widget, use the JavaScript 0 1 0 0 0 0 2 2
for a full list of properties
that can be set on a sound 0 0 0 1 0 0 3 1
Given a sound or set URL,
you can retrieve all of the 0 1 0 0 0 1 3 1

if you are writing an

application that runs in
the browser, you should 0 0 1 0 2 1 1 1
if you donot want to use
the SoundCloud widget,
our APl gives you the 0 0 1 0 0 0 3 0

Fig. 18. Snapshot of an excerpt of the rule matrix

We also show in Fig. 19 the distribution of our rules over the Seven-COIN classes.

51

Research part two: Automatic identification of COINs using ML and NLP

W Error
syntax [N T
Function
structure [N e

m Nodal Verbs

semantic [ININ I T - oo

W Data Structure

quality [. = recnricaerms

B Variables

not-con NI = e

= Qutput-nput

aynamic I - e e

COIM Class

B Date-Time
context [N T e maceme
capahility
0% 20% 4085 60 Bl¢a 100% meuide
W Restriction
B DevicES

Fig. 19. Rules distribution over the COINs Classes

It can be noted from Fig. 18 some rules apply to all COIN Classes, but the decision is not based on one rule

satisfaction, but on all rules together.

Generally, we can observe that different COIN classes satisfy more than one rule. For example, all COIN

classes share rules on structure keywords and technical terms. On the other hand, each COIN class has some

special rules that is satisfies unlike the other classes. For example:

Syntax COINSs: "Definition™ rule is one of the predominant rules of this COIN class compared to the
other classes.

Structure COINSs: “Structure” rule is the mainly satisfied rule.

Semantic COINs: This class has a balanced distribution between three main rules (Goal, Condi-
tional, and Explanation/Example).

Quality COINs: As we have a few instances of this class (i.e., 28 sentences only), we could not de-
termine the exact features or rules for this COIN class.

Not-COIN: This class mostly satisfies the “Technical term” and the “Conditional” rules. It also sat-
isfies the “Goal” rule to some extent.

Dynamic COINs: There are many instances of this class that satisfies the “Conditional” sentence
rule, “Resource” terms, and “Action verb” rules.

Context COINs: This COIN class is similar to the Quality COIN class in terms of the few number
of instances. Hence, we do not have enough data (i.e., 13 sentences only) to decide on the rules it

satisfies more frequently. For this limited instances we noticed they satisfy the “Conditional” rule.

Phase 2: Selecting ML classification algorithms. Based on our literature review and deep investigating for

the different existing ML algorithms that are specifically used for text classification, we found that Naive

Bayes (NB) [25], and Support Vector Machine (SVM) [26] are the most effective and recommended ones

52

Research part two: Automatic identification of COINs using ML and NLP

[53] [54] [55]. Nevertheless, our curiosity made us decide to try the different versions of Naive Bayes (i.e.,
Complement Naive Bayes [56], Naive Bayes Multinomial updatable [57], Naive Bayes Multinomial [58], Na-
ive Bayes Updatable [59]). In addition, we included other algorithms like Decision Tree (J48) [60], Random
Forest Tree [61], Simple Logistic [62], Logistic Regression [63], and K-Nearest Neighbor (KNN) [64].

Phase 3: Configuring and running tests for the ML classification algorithms. Having the classification
algorithms selected, we trained the ML classification model using the matrix that we produced in phase 1. The
test was run on the two versions of our COIN Corpus (i.e., the Seven-COIN Corpus and Two-COIN Corpus).

For the activities in this phase, we used Weka 3.7.13 7 to train and test the classification models.

1- Seven-COIN classification experiment run.
In this experiment run, we trained the classification model using the rules’ matrix that resulted from
phase 1. Then we ran the selected above mentioned text classification algorithms.

2- Two-COIN classification experiment run.
Similarly, in this experiment run, we trained the classification model using the rules’ matrix that re-

sulted from phase 1. Then we ran the selected above mentioned text classification algorithms.

Generally, for each test run, the corpus was divided into a training and testing sets. The training set we used
for teaching the classification model about the rules, while we used the testing set for determining the model’s
classification accuracy. In specific, we used the k-fold cross-validation [65] [66], in which the data set in our
corpus is divided into k subsets. Then, (k-1) subsets of the data set are used for training and one subsets used
for testing. As we used k = 10 for 10 rounds, then we got in each round 9 subsets are used for training the
classification model and only one subset is used for testing. Finally, we computed the average of the 10 runs.

Phase 4: Evaluating the experimental results. Next, we briefly introduce the metrics we used in evaluat-

ing our experimental results to evaluate the results. Then, we use them in interpreting the results in details.

Evaluation Metrics
Recall, Precision and F-Measure are the most commonly used metrics for evaluating the accuracy of text
classification models [67]. Hence, we used these metrics, which we explain below, for evaluating the results

of all our tested ML classification algorithms.

Recall (R) is the ratio of the records that are correctly predicted to the total number of relevant records in
the data set. Recall is a fractional number between 0 and 1 and usually expressed as a percentage [68] and is

calculated using the following formula:

of correct prediction _ #TP
of relevant records = #TP + # FN

Recall (R) = (2)

Precision (P) is a ratio of the documents that are correctly predicted to the total number of relative and
irrelative records that are retrieved from the data set [68]. Precision is a fractional number between 0 and 1

and expressed as a percentage and is calculated using the following formula [68]:

”Weka is a collection of machine learning algorithms for data mining tasks. http://www.cs.waikato.ac.nz/ml/weka/

53

Research part two: Automatic identification of COINs using ML and NLP

of correct prediction _ #TP
of (relevant + irrelative) records #TP + #FP

3)

Precision (P) =

F-Measure (F) is a combination of recall and precision. F-Measure is a popular evaluation metric for im-
balance problem, in which the data set are not classified equally (e.g., some of the classes are more than the

others) [69] [70]. F-Measure is calculated using the following formula:

2 X precision X recall

F= €))

precision + recall

Results and Evaluation
As mentioned earlier, we performed the experiment on two versions of the corpus, first one on the Seven-
COIN Corpus, and the next on the Two-COIN Corpus.

With regards to the Seven-COIN classification results, we found that the best F-Measure was achieved by
Logistic Regression, Recall of 47.0%, Precision of 57.7% and F-Measure of 47.6% (See Table 17).

Table 17. Model performance for classifying Seven-COIN

Classification Algorithm Recall Precision F-Measure
Logistic Regression 47.0% 51.7% 47.6%
Naive Bayes 50.2% 45.8% 46.5%
J48 49.8% 46.1% 46.5%
Complement Naive Bayes 45.6% 49.2% 46.4%
Neural Network 49.2% 45.8% 46.2%
Random Forest Tree 47.1% 44.4% 45.0%
KNN, k=18 49.6% 46.7% 43.7%
Support Vector Machine 49.6% 43.9% 43.7%

Similarly, we found that the best results of the Two-COIN classification was achieved by Logistic Regression,
Recall of 66.5%, Precision of 66.1% and F-Measure of 65.7% (See Table 18).

Table 18. Model performance for classifying Two-COIN

Classification Algorithm Recall ~ Precision ‘ F-Measure
Logistic Regression 66.5% 66.1% 65.7%
Naive Bayes 66.0% 65.5% 65.3%
Complement Naive Bayes 64.3% 64.8% 64.5%
148 64.5% 64.0% 63.9%
Neural Network 63.4% 62.7% 62.4%
KNN, k=18 62.3% 61.9% 62.0%
Random Forest Tree 62.2% 61.9% 62.0%
Support Vector Machine 64.0% 65.6% 59.1%

54

Research part two: Automatic identification of COINs using ML and NLP

Conclusion on rule-based classification

According to the results we obtained from these experiments, we conclude that:

- The accuracy of the first model (i.e., Seven-COIN classification) gave a maximum accuracy F-
measure of 47.6%, which is obtained by applying the logistic regression algorithm.

- Onthe other hand, the second model (i.e., Two-COIN classification) gave a little bit improved ac-
curacy with F-measure of 65.3%, which is achieved using a Naive Bayes algorithm.

To the best of our knowledge, these results can be improved if we have a larger data set (i.e., more manu-
ally classified sentences in the corpus). That is, our contributed corpus has a small size (less than 3K of
COIN sentences). Still, we believe that these achieved results are promising and this encourages us to inves-

tigate different strategies to optimize the results by using other possible text classification algorithms.

55

Research part two: Automatic identification of COINs using ML and NLP

6.2 Second Approach: Bag-of-Words-based Machine Learning Classification

In this section, we explore another approach for automating the extraction of COINs from textual content
of API documentation by using ML classifiers along with the Bag-of-Words (BOWSs) model [32].

As we saw in the previous section, Rule-based ML classification using our manually identified rules did
not provide high accuracy results. Hence, we expanded and intensified our efforts toward exploring other text
classification strategies. By reviewing further research papers in machine learning and text classification meth-
ods, we found that there is a representation model for the data that could show better effectiveness and effi-
ciency in classifying natural language text called Bag-of-Words. In BOWSs model, each sentence is represented
as a collection of words after tokenizing it using natural language processing techniques. For example, a sen-
tence like “This is a model” is represented as {“This’, ‘is’, ‘a’, ‘model’}. Thus, each word represents an inde-
pendent feature. The co-occurrence of words is weighted using a model called TF-IDF (i.e., Term frequency
—Inverse Document Frequency) [33] that we will explain in more details later in this chapter.

Accordingly, we decided to adopt the BOWSs modeling in our research to see its potentials in classifying
the sentences of APl documents into the COIN classes. This required us to follow the process as shown in Fig.

20, which we have published in a paper related to the thesis work [2]. In next sections, we describe the details

for each step of this process.

COINs Feature selection W Set of
Corpus and reduction features

Feature model

Feature
modeling

Classified ML class_lfler "c.'f .CDINS Corpus"l
testing subset Evaluation Training Testing
“by Cross-validation” subset subsat

Fig. 20. 'Process Flow' of our model [2]

Data preparation

In this stage, we prepare the data set (i.e., the sentences in the Seven-COIN Corpus) by transforming the
format and cleaning the content that we describe next.

Format transformation. We transformed the format of the sentences in the corpus from CSV (i.e. Comma
Separated Values) to ARFF (i.e. Attribute-Relation File Format®).

Content cleaning. For performance consideration of the classifier, some sentences needed cleaning to re-
move the technical noise that existed in the non-natural language text (e.g., http links, resources and path,
service location, variable definitions, or functions call). Such technical noise exists frequently in APl docu-
ments text to explain the technical usage of the offered APIs. Therefore, we developed some text manipulation

techniques to reduce the technical noise as the following:

8 ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attrib-
utes. URL:https://weka.wikispaces.com/ARFF+(stable+version)

56

Research part two: Automatic identification of COINs using ML and NLP

- Hyperlinks: basically, we defined a regular expression to replace all hyperlinks that might exist in the text
with a constant term (i.e., ‘Hyperlink’). That is, the whole textual content is checked to find if it has any
hyperlink to replace it with this constant using the following regular expression that we defined:
(https?:VV)2(www\.)?(ftp\:VV)?[-a-zA-Z0-9@:%._\+~#=]{2,256 }\.[a-z]{2,256 }\b([-a-zA-Z0-
9@:%_\+.~#2&/I=]1%)+[MN\(| V)]
The above regular expression is used to detect hyperlinks like:

https://www.facebook.com, http://yahoo.com, www.google.com, http://speedtest.tele2.net .

- Resources’ path: APl documents might contain some paths that point to particular resources, locations, online
data, or further information regarding the usage of the API. Such technical noise is very similar to the hyperlink
noise. In order to manipulate this noise, we also developed another simple regular expression as the following:
W(((MIA)+()+
The above regular expression is used to detect hyperlinks like:

file/document/ , /location/windows/abc , \server\pc\ , \\file\\system.

- Variables: Any expression of words in the form of X_Y or _X can be considered as variable and here we

replace it with a constant term “vARIABLE”. For that, we developed the following regular expression:

\w+_\w+ and \s\w+\V\w+\s

As an example: "if neither time specified, departure_time defaults now (that is, departure time defaults
current time)." After replacement by our regular expression, it looks like " if neither time specified, VARIABLE

defaults now (that is, departure time defaults current time)."

- Function Call: In some sentences, there are a piece of code used as examples to explain how the function

or method works, this code contain a function call. Hence, we developed a simple regular expression to capture
this pattern as the following:

AW\ F\w+H (\Ww*))

Example: set(), get(), add(a,b), print(x).

57

https://www.facebook.com/
http://yahoo.com/
http://www.google.com/
http://speedtest.tele2.net/
file://///file/system

Research part two: Automatic identification of COINs using ML and NLP

Perquisites input for our ML classification model.

In our study, we observed that the conceptual constraints are the non-technical information that their main

concern is not “how” to implement, configure, or deploy the service or system.

According to these observations in our experiments, we ignored some technical information from the anal-
ysis process. For example, we did not include pure code, and partially technical terms explanation in some
section. Especially in development pages, examples and technical help which in general, they have non-repre-
sentative information about concepts, same as the (mixed-code with technical terms), or non-meaningless sen-
tences (basically: our model is not customized for grammar/spelling checking). Thus, we assume that the
grammar of the document’s content should be well formed with the right spelling. Therefore, textual input to
our model should be correct, complete, and meaningful sentence(s).

In addition, we also exclude headers, paragraph titles, footers, image/figure description, and table descrip-
tion, which mostly do not help to detect any useful information about the system/service concept. In addition,
we did not include “text-as-link”, and some sentences that contain one or more function(s)/variable(s)/param-
eter(s)/link(s) or/and sentence that contains many non-natural language (NL) terms. As an exception, in some
cases we included some sentences, which contain non-NL, like functions/parameters/etc., sentences that have
technical keywords, etc., only if the context is about a concept or non-technical constraints.

On the other hand, we excluded sentences from the SDK documentation part of the APl documentation.
This due to our awareness of the technical dominance in this part of the APl documents, which we observed
and concluded through the manual analysis, processing, and classification of sentences in out multiple-case
study. Beside, our prior knowledge, excluding this technical part allows better learning for the ML classifiers

and consequently better classification results later.

Exploratory Experiment

In this section, we conduct two different experiments, one for Seven-COIN classes and the second for the
Two-COIN classes. These experiments are performed to measure the performance of the text classification
algorithms in terms of accuracy.

Phasel: Applying NLP Pipelines.

The purpose of NLP Pipelines (processes/tasks) is to select the most presentative features (keywords) by first
cleaning corpus from noise (insignificant words like Stopwords, punctuation, etc.) and then grouping similar
words into one form using stemming, in which the word will reduced to its root (e.g. Recording = record,
operation > operate, playing > play, etc.). For more details, our Seven-COIN corpus contains 2283 COINs
(sentences), these COINSs consist of 41,287 words, which in average there are 18 words per one COIN (sen-
tence). Hence, we aim at representing each COIN with the most informative words and filtering out the less
important words, thus NLP pipelines helps to perform such a task if we applied the previous tasks, then we
will get only small number of features (keywords) compared with if select all words in the corpus. Then, by
using TF-IDF (which is the last process performed on the resulting features from the previous processes above-

mentioned), then these features will be weighted according to its importance in the corpus.

58

Research part two: Automatic identification of COINs using ML and NLP

The input is: the sentences in the corpus.

This is to transform the textual data set into a mathematical representation that is the required form to be fed
up to the classification model. More specifically, the input to this phase is the whole manipulated Seven-COIN
corpus resulting from the previous data preparation.

The output is: a weighted matrix of the weighted features.

Note that our NLP pipe lines are performed completely using Weka v 3.7.11 1° as the following:

- Word tokenizing: Once we obtained the sentence from the previous procedure (i.e., Sentence Tokenizing),
we splitted each sentence into a subset of individual words. For example, the following sentence S1="All
images must reside in the Watch app bundle” will be represented as a subset of keywords such as S1° = { “‘All’,

’images’, ‘must’, ‘reside’, ’in’, ’the’, "Watch’ ,’app’ , "bundle’}.

- Lowering cases: A word can be written in two different forms, but still the same. For example, at the begin-
ning of the sentence, the first letter of the word is always in uppercase, while, in the middle of the sentence the
same word would be written in lowercase. However, in machine learning technology, text classification algo-
rithms do not consider such cases as the same word. This affects the performance results of classifiers in a
negative way. Thus, we normalize all words to be in one form (i.e., lowercase). As an example, the word ‘All’
is converted to ‘all’ and the word ‘The’ is converted also to ‘the’. Therefore, in this phase, we converted the

all the words in Seven-COIN Corpus into the lowercase form.

- Stopwords Eliminating: Stopwords refer to the commonly used words that are considered as a conjunctive
words, prepositions, adverbs, or pronouns. In our work, we adapted the default English Stopwords list, which
is a list of English words are used in Weka. Hence, we adapted this list after we performed some experiments.
The experiments were conducted many times by training a classification model on the data set of the Seven-
COIN corpus, each time we used different Stopwords, until we got a best accuracy. For example, we found
that some words like ‘if’, ’then’, ‘while’, *'when’ and modal verbs: ‘could’, ‘can’, ‘would’, ‘will’, ‘shall’,
‘should’, ‘may’, and ‘might’ should not be considered as Stopwords because it can change the accuracy of the
classification model based on our observation during the experiments we conducted. The reason behind this is
that, these words are used so frequently in the sentences within our Seven-COIN corpus especially for the
following COIN classes: dynamic, semantic, and Not-COIN. Hence, if we exclude these words, then it will
decrease the accuracy of the classification model. Thus, we defined a special Stopwords list for our model that

does not include the modal verbs and some temporal conjunction, see Appendix (Table 37. Defined Stopwords)

- Words stemming: One useful and important NLP technique is to stem a word into its root that is considered
to be the primitive lexical unit of any similar words [71]. Hence, we applied the stemming to aggregate all
similar forms of the words into one unified form. This process reduces the number of keywords that share a
similar root. After reviewing the comparative study of Stemming Algorithms [72], we had tested the perfor-
mance of many stemming algorithms like Porter (Snowball) stemmer [73], Lovins stemmer [74]. Then, we
decided to choose Snowball stemmer due its performance in terms of F-measure when used in classifying the
COINs.

9 Weka: http://www.cs.waikato.ac.nz/ml/weka

59

Research part two: Automatic identification of COINs using ML and NLP

It is worth to mention, that we conducted an experiment to compare between the effects of the stemming
and the lemmatization processes [71] on that accuracy of the classification algorithms (i.e., NB [25], SVM
[26] and Complement NB [56]). The experiment results showed that the stemming process was better than

lemmatization in terms of the classification models accuracy in terms of f-measure as shown in Table 19.

Table 19. Comparision between Stemming and Lemmatization in terms of F-Measure

F-Measure
Process
SVM Complement NB
Snowball Stemming 62.8% 59.0% 70.0%
Lemmatization 60.7% 57.6% 66.5%

- Feature extraction using N-Gram combination: At this phase, we aimed at extracting the features from the
sentences in the Seven-COIN Corpus. At the beginning, we considered each single word in the sentence as a
feature (Uni-Gram), but after performing a number of experiments, as we will show later, we decided to use
N-Gram [35] where N is between 1 and 3. That is, we considered the features as each single word, each com-
bination of two consecutive words, and each combination of three consecutive words. Such technique enables

us to preserve the words’ order and to keep the context of the sentence as well.

Terms weighting: In this stage, the whole COINS corpus is transformed into a mathematical model that is a
matrix. In this matrix, the header contains all the extracted features from the previous phase, while each row
represents a sentence in the corpus. Thus, each cell [row, column] holds the weight of a feature in the sentence.

For achieving the best weighting, we used Term Frequency-Inverse Document Frequency (TF-IDF) [33].

Evaluation Metrics

We used the same metrics as the ones we used for the Rule-based classification experiment. That is we used
in the first Approach: Rule-based Machine Learning Classification in the evaluation section as the follow-
ing:

We used k-fold cross-validation, in which the data set in our corpus is divided into k subsets. Then, (k-1)
subsets of the data set are used for training and one subsets used for testing. As we used k = 10 for 10
rounds, then we got in each round 9 subsets are used for training the classification model and only one

subset is used for testing. Finally, we computed the average of the 10 runs.

Results and Evaluation.
In this section, we present the results that we have obtained after we have conducted the experiment on two
different types of corpus, Seven-COIN corpus and Two-COIN corpus by applying different classification al-

gorithms. And finally, we perform a statistical comparison between these results.

60

Research part two: Automatic identification of COINs using ML and NLP

Classification accuracy achieved by the different ML Classifiers (Seven-COIN Corpus case): The re-
sults showed different values for different text classification algorithms. For classifying seven classes, we
have achieved the best accuracy using 1,2,3-Gram with recall of 70.2%, precision of 72.4% and f-measure of
70% by using ComplementNaiveBayes algorithm (see Table 20). While, in the second place comes Na-
iveBayesMutinomialupdatable with accuracy recall of 65.1%, precision of 66% and f-measure of 65.4%. The
rest of the results show accuracy f-measure between 62.8% and 52.3%. The worst results were obtained by
Decision Tree J48 and KNN where (K=1, 2) algorithms. These results are better than our results which are
obtained in our recent published paper [2] which reported f-measure of 62.2% using 1,2,3 Gram with NB

algorithm.

Table 20. Accuracy comparison between different classification algorithms

1,2,3 Gram

Classification Algorithm

Precision Recall F-Measure

ComplementNaiveBayes

70.4% 70.2% 70.0%
NaiveBayesMutinomialupdatable

66.0% 65.1% 65.4%
NaiveBayes

64.3% 62.4% 62.8%
NaivebayesMultinomial

66.3% 59.5% 61.9%
Support Vector Machine SVM

59.3% 60.0% 59.0%
NaiveBayesUpdatable

55.3% 51.7% 52.5%
Simple Logistic

52.5% 54.4% 52.4%
Random Forest Tree

60.4% 56.3% 52.3%
Decision Tree J48

48.5% 49.6% 48.3%
KNN K=1

54.8% 45.5% 40.8%
KNN K=2

49.8% 36.1% 30.1%

In Fig. 21, we can see clearly that, the accuracy of 1,2 Gram is very similar to 1,2,3 Gram with very small

difference (i.e., F-measure improved from 68.4% to 70.0%).

61

Research part two: Automatic identification of COINs using ML and NLP

100% [l ComplementNaiveBayes

90% [Decision Tree J48

KNN K=1
80% n

KNN K=2
70%

NaiveBayes

60%

F-Measure

I NaivebayesMultinomial

50% " —
NaiveBayesMutinomialupdatable

0
40% NaiveBayesUpdatable

30% Random Forest Tree

20% Simple Logistic

10% Support Vector Machine SVM

& & NS
v v o

Fig. 21. Text algorithms performance via N-Grams

Table 21 shows the difference between these two variations in terms of F-measure.

Table 21. Accuracy comparison by using all words and top 1500 words

1,2,3 Gram

Algorithm All words 1500 words

Precision Recall F-Measure Precision Recall F-Measure

ComplementNaiveBayes 70.4% 70.2% 70.0% 67.8% 67.9% 67.7%
NaiveBayesMutinomialupdatable 66.0% 65.1% 65.4% 65.3% 65.2% 65.2%
NaiveBayes 64.3% 62.4% 62.8% 63.3% 62.0% 61.1%
NaivebayesMultinomial 66.3% 59.5% 61.9% 65.1% 61.1% 62.7%
Support Vector Machine SVM 59.3% 60.0% 59.0% 58.4% 59.0% 57.8%
NaiveBayesUpdatable 55.3% 51.7% 52.5% 55.1% 51.3% 52.2%
Simple Logistic 52.5% 54.4% 52.4% 53.1% 54.5% 52.3%
Random Forest Tree 60.4% 56.3% 52.3% 61.0% 53.5% 47.3%
Decision Tree J48 48.5% 49.6% 48.3% 48.5% 49.6% 48.3%
KNN k=1 54.8% 45.5% 40.8% 55.0% 47.1% 41.5%
KNN k=2 49.8% 36.1% 30.1% 51.6% 44.6% 31.3%

Itis clear, that the usage of all corpus words gives more accuracy than just using only top 1500 words. This
is also shown in Fig. 22. In addition, using 1,2,3 Gram with all corpus words is not only better than the using

the top 1500 words, but it is also better than using bi-gram or uni-gram.

62

Research part two: Automatic identification of COINs using ML and NLP

100%

90%

80%

70%

M 1 Gram
M 1,2 Gram
0 1,2,3 Gram

60%

50%

F-Measure

40%

30%

20%

10%
1500 word All words

Fig. 22. Comparison between using corpus size corresponding to different N-Grams

For more precision, we conducted the experiment over the text classification algorithms and we observed

that ComplementNaiveBayes achieves the best performance over all N-Gram combinations. See Fig. 23.

100%
90%
80%
o 70%
§ 60% M 1 Gram
i} M 1,2 Gram
s 50% M 1,2,3 Gram
L 0%
30%
20%
10%
P
>
N
S
&
&
Oo

Fig. 23. Performance of text classification algorithms via different N-Gram combinations

Results improvement using linguistic knowledge

In an attempt to enhance the accuracy results, we incorporated linguistic knowledge by using WordNet [75]
as stated to have a positive effect [76] [77]. In this regard, we decided to use hypernym?°, which employs the
semantic relationship between similar words. For example, a set of words {‘Blue’,’Red’,”Green’} has a com-

mon hypernym called ‘Colour’; as explained in Fig. 24. Explanation of Hypernym

10 Hypernym is the name of a broader category of things [91]. For example, “colour” is hypernym of “red”.

63

Research part two: Automatic identification of COINs using ML and NLP

Colour

Hypernym

Blue Red Green
| | |

Hyponym

Fig. 24. Explanation of Hypernym 1!

Hence, we developed a python method to extract the hypernym of all words of type verb or noun from the
WordNet as shown in Fig. 25. Then we replaced the word in our corpus with the corresponding hypernym
word. In case there is no hypernym, then we return the same word.

1 def getHypernym(word,pos type):

2 if (pos type=='noun' and len(word)>=2

3 and len(wordnet.synsets(word, pos=NOUN))>0) :
4 if (wordnet.synsets(word, pos=NOUN) [0].hypernym !=None)

5 return (wordnet.synsets(word, pos=NOUN) [0].hypernym[0])

6
7
8

elif (pos type=='verb' and len(word)>=2
and len(wordnet.synsets(word, pos=VERB))>0):

9 if (wordnet.synsets (word, pos=VERB) [0].hypernym !=None)

10 return (wordnet.synsets (word, pos=VERB) [0].hypernym[0])
11

12 return word

13

14 else:

15 return word

Fig. 25. An excerpt of the developed Python code to extract Hypernym using the WordNet

Then we performed the experiment on the corpus using the same setting with the linguistic knowledge (i.e.
WordNet) and we achieved a less accuracy f-measure of 63.8% compared with 70.0% using ComplementNa-
iveBayes algorithm as shown in Table 22. F-Measure of using the WordNet with respect to non-using of
WordNet
It is worth mentioning that, we used hypernym method, to the best of our knowledge this method is one of
the proposed methods besides other widely used methods like (synonyms, antonym) . In our case, the experi-
ments took 11 hours, from 10:00 PM to 09:00 AM to extract all hypernym of words in our corpus, which is
too much consuming time. Note that, the processor we ran the experiment on is Intel core i5 460 M with 2.5
GHZ.

11 Adapted from http://ohmyluna.blogspot.de/2011/01/hypernym-and-hyponym.html

64

Research part two: Automatic identification of COINs using ML and NLP

Table 22. F-Measure of using the WordNet with respect to non-using of WordNet

F-measure

SVM Complement NB

Without WordNet ‘

Using WordNet ‘

Classification accuracy achieved by the different ML Classifiers (Two-COIN Corpus case): As we men-
tioned earlier, the Two-COIN Corpus is derived from the Seven-COIN Corpus by abstracting into ‘COIN’ and
‘Not-COIN. Therefore, we ran a second round of the experiment where we repeated the same steps as ex-
plained in the first round with the Seven-COIN Corpus.

We tested the performance of our model using ten classification algorithms as shown Table 23 and Fig. 26.

Table 23. Accuracy comparison between different classification algorithms

1,2,3 Gram
Classification Algorithm all words
Precision Recall F-Measure
ComplementNaiveBayes 81.9% 82.0% 81.9%
NaiveBayesMutinomialupdatable 81.9% 82.0% 81.8%
NaiveBayesUpdatable 70.5% 70.8% 70.5%
NaiveBayes 76.7% 74.5% 74.6%
NaivebayesMultinomial 81.8% 81.9% 81.8%
Support Vector Machine (SVM) 75.7% 75.7% 75.7%
Decision Tree J48 65.0% 65.2% 65.1%
Random Forest Tree 73.7% 73.9% 73.7%
KNN K=1 64.2% 52.3% 47.8%
KNN K=2 64.4% 48.7% 40.6%
Simple Logistic 68.2% 68.4% 67.2%
Logistic 67.1% 67.5% 66.5%

65

Research part two: Automatic identification of COINs using ML and NLP

M Precision
W Recall
M F-Measure

F-Measure

classification algorithms

Fig. 26. Accuracy comparison between different classification algorithms

Next, we performed the experiment by applying the classification algorithms on different combination of
N-Gram. As expected, the result was similar to the Seven-COIN round. The results revealed an improvement
in the accuracy compared to the Seven-COIN classification. That is, we have achieved the best accuracy using
1,2,3-Gram with recall of 82.0%, precision of 81.9% and f-measure of 81.9% by using ComplementNa-
iveBayes algorithm. In the second place came the NaiveBayesMutinomialupdatable with accuracy recall of
82.0%, precision of 81.9 % and f-measure of 81.8%. These results are much better than what we reported in
our published paper [2], in which we got accuracy of f-measure 76.0% using 1,2,3 Gram with NB algorithm.
Besides, we compared the performance of the learning algorithms of our model with respect to different com-

bination of N-Gram. The results are shown in Fig. 27 and Fig. 28 respectively.

100%

Il ComplementNaiveBayes
90%

I Decision Tree J48

80%

B KNN K=1
o 0% —
5 [KNN K=2
& 60% —
(3] NaiveBayes
=
L 50% —

I NaivebayesMultinomial

40% . . .
[l NaiveBayesMutinomialupdatable

o [l NaiveBayesUpdatable

20% Random Forest Tree

10% Simple Logistic

[l Support Vector Machine SVM

Fig. 27. Algorithms performance via N-Gram

66

Research part two: Automatic identification of COINs using ML and NLP

B 1Gram
B 1,2 Gram
M 1,2,3 Gram

F-Measure

Fig. 28. Classification performance via different N-Gram combinations in Two-COIN corpus

Finally, we observed that, if we limited the classification classes to COIN and Not-COIN, then the f-meas-
ure score increases to reach 81.8% instead of 70.0%. Our results are recorded in Table 24 and illustrated in
Fig. 29.

Table 24. Accuracy comparision between two different corpora

NaiveBayesMutinomialupdatable ComplementNaiveBayes

COINs Type (1) (2)
F-Measure F-Measure

Two-Classes 81.8% 81.9%

90%

80%
70%
60%
50%
40%
30%
20%
10%

0%

1 2

B Seven-Classes B Two-Classes

F-Measure

Fig. 29. Accuracy comparision between two different corpora

67

Technical Support (A Tool Prototype)

7 TECHNICAL SUPPORT (A TOOL PROTOTYPE)

To bring our ideas into industry and make it practical, we designed a simple plugin tool so software archi-
tects or analysts can benefit from our ML classification ideas and achievements effectively. The tool aim sat
making it easy for architects to shape a general perception, which helps them in extracting the conceptual
interoperability constraint from APl documents automatically. We built a prototype for the tool using web
service technologies. Through the tool, the architect selects any piece of text, and requests the COIN type that
the sentence could have just in one simple step. Such a service offered by the tool is very easy to use by an
architect in terms of usability, and accessibility. It also reduces the needed time and effort to analyze large
textual content searching for the COINS.

We implemented our tool prototype as a simple plugin for the Chrome web browser and we call it the CEP-
COIN (an abbreviation for Classifier Ensemble Plugin—COIN). We use the Java and JavaScript languages for
the implementation and we designed the tool with both front-end side and a back-end. Shortly, the front-end

side is the user interface (UI), while the back-end one is the core unit of our CEP-COIN.

Principle of work

A client uses CEP-COIN plugin from a web browser to send a piece of text from an APl document through
an http request to the web server, which hosts and runs the web service. We call this service ‘COIN Classifying
Service’. Given a sentence, the web service predicts the COIN type by using the machine learning classifica-
tion model that we introduced in section 6.2. Then, this web service responds to the client request by sending
back the result (i.e., the COIN class that the sentence has). A simple overview of the described process flow is

shown in Fig. 30

Http Request the “COIN Class”

CEP-COIN tool /3\

.-
> A N '
1 f Sentence

<Input> k/
/ Web server

Http Response “COIN Class”

'I:'
COIN class

<Output>

Fig. 30. Process Flow of the CEP-COIN

68

Technical Support (A Tool Prototype)

Using the CEP-COIN Tool

In this section, we explain how software architect can install the tool prototype and how to use its func-

tionalities that are easy to follow.

CEP-COIN Installation. CEP-COIN prototype tool is very easy to install as Add-In for Chrome (we have

tested it Chrome version 49”). The software architect can import this tool from Chrome settings through the

extension menu. From this menu the architect would load the unpacked extension then select the folder of

the CEP-COIN as shown in Fig. 31

Chrome Extensions
Histary - | Load unpacked extznsion... | ‘ Pack extensicn...
Extensions

Settings COINS Class Finder 1.0

Using Machine learning to classify conceptual constraints COIN
About Detail: Reload (Cirl+R)

ID: ihphlcodasgjpjicdajpdecckgjnbpmid

Loaded from: ~A\DocumentsiextensiomyCCIN_Classification_Plugin

Inspect views: background page

Fig. 31. Installing CEP-COIN Tool

Using CEP-COIN functionalities. The CEP-COIN service is offered in three different forms:
1. Using CEP-COIN Context Menu.

2. Using CEP-COIN Plugin GUI.

3. Using CEP-COIN Web Page.

1. Using CEP-COIN Context Menu: Once the CEP-COIN plugin is installed, you can select any text on the

webpage of an APl document, then right click on the mouse and select COIN Classification. Immediately,

a popup window will appear with a COIN-Type as shown in Fig. 32. This context menu is very friendly if

the user want to classify any text by selection, but if he want to write his own text to classify, then he should

use another functionality of CEP-COIN plugin as it is explained next.

Qur public endpoints ork by just providing a ci1ient 1d. Acting on behalf of

1
another user is differen

how this works. Copy

If you're connecting using OAuth, don't forget that tokens

. The Authentication section gives a detailed explanation of

Print... Ciri+P

B comn Cassification ~

NI

semantic

Steps: & Google Translate
1) Select any text.
2) Rightclick ' Inspect Ctrl+Shift+1

3) Click ‘COIN Classification

Fig. 32. Using CEP-COIN Tool from context menu

69

Technical Support (A Tool Prototype)

2. Using CEP-COIN Plugin GUI: In this case, the software architect can enter any sentence without leaving
the webpage of the APl document. The GUI of this form has a very simple interface. With this GUI, the
software architect can write any text and by pressing the button “Get COIN Class” then he can get the
corresponding COINSs class in the result field as shown in Fig. 33.

[Enter a sentence:

our servers are too busy to handle your request.o

| Get COIN Class |°
N

Result:

semantic +—

Fig. 33. Using CEP-COIN from Plugin GUI

3. Using CEP-COIN Web Page: We developed a simple JSP page, which takes a textual sentence as an
input and returns the COIN type as an output. This service differs from the previous menu services in terms
of enabling the software architect to write any sentence without need to install the CEP-COIN. In addition,

he can use this web page from any web browser. See Fig. 34.

« C A [ertigaa.cloudapp.net:8080/WebApplication2/faces/index.jsp

Enter a sentence: Block the hyperlink s action, typically causing a security warning dialog to & | Get COIN Class |

Result: |semantic

Examples:

"bicycling requests bicycling directions via bicycle paths & preferred streets (where available)." #context
"Blank elements are indicated through empty arrays in JSON, but by the absence of any such element in XML.
"Block the hyperlink s action, typically causing a security warning dialog to appear." #semantic

"by default, XPath expressions match all elements." #not-COIN

"both telnet and ssh sessions are closed with the disconnect command." #dynamic

Fig. 34. Using CEP-COIN service from the JSP page

70

Technical Support (A Tool Prototype)

CEP-COIN Architecture

The Architecture of our CEP-COIN tool consists of two separated components as illustrated in Fig. 35

1- Front-End component: developed using JavaScript.

This component consist of one layer, which is a User Interface (Ul) layer to provide a graphical user inter-
action (i.e., GUI). The software architect sends an http request from the browser via CEP-COIN tool. The tool
communicates with the server side directly using Ajax. Then, CEP-COIN passes the result back to the browser
using JavaScript & JQuery.

2- Back-End component: developed using Java.

There are three different layers. First layer is a business layer, which is responsible for finding the service
location. Then, it requests the service from a web services, and passing the sentence to the classification ser-
vice, which in turn sends a Simple Object Access Protocol (SOAP) [78], Description Language (WSDL) [79]
[80] file that contains:

1- The abstract service interface definition.
2- How to interact with service.

3- The location of the service.

The second layer is the data access layer, which is responsible for creating an instance from the classifica-
tion model and for applying the text classification algorithm to find out the corresponding COIN class for
the sent sentence.

71

Technical Support (A Tool Prototype)

Cront-End
| A | Sl = L0 |
Ul Layer
Browser e
JavaScript t
CEP-COIN Plugin
A
HTTP Response HTTP Request

Web Services
“Classification service”

WSDL file

Classification Method

Machine Learning Algorithms

Data Resource Classification
Layer Model

Fig. 35. Architecture of the CEP-COIN

CEP-COIN Implementation

We created two independent implementation parts: one for the client component (i.e., the representation
layer) using Ajax code to request our web service, and the second for the server component (which responds
to the client request and retrieves the COINSs class using Java language. Next, we explain this implementation
part in more details.

Client Component (Front-end) implementation. In Fig. 36, we show an excerpt of the JavaScript*?and
JQuery® code for requesting the COIN classification from server side. And this implementation is used in all

of the three forms of the client services (Context Menu, Plugin-GUI and Web form) as stated above.

12 https://www.w3.org/community/webed/wiki/What_can_you_do_with_JavaScript
13 https://jquery.com/

72

Technical Support (A Tool Prototype)

function getTheCOINType [2] ()
{

var sentence=getParameterByName('textCOIN'") ;

var posting =

{textCOIN: sentence});
posting.done (function (data) {
document.write(data.trim()); }

});

Fig. 36. JQuery for requesting the Classification Service

The implementation defines a simple http request using post command. Hence, the command requires the
web service URL and retrieves the COIN type. Then, it writes back the result immediately on the webpage od
the browser document.

Server Side (Back-end) implementation. Here we depict the three main processes that are running on the
server side of our tool. Note that we used GlassFish Server 4.1.1' for deploying and running the CEP-COIN
web service.

The core functionalities of our server side are performed in the business logic layer. There are three essential
processes to retrieve the COIN type. These three processes are (load ML model, classify, and response to client
request) these processes are shown in Fig. 37

requested Load ML
sentence Model ML Model — COINS Type
<Input> NI
COIN type
<Output>

Fig. 37. Server Side Processes Flow

These processes are implemented completely in pure Java. We used NetBeans 8.1 as an IDE and Java EE
Swith JDK 1.8 € for developing the server side code. For loading ML libraries and algorithms, we used Weka
API [81]. The reason to use Java APl and Weka API. Therefore, all Weka resources and packages are totally

Java callable, reliable, stable and compatible.

14 https://glassfish.java.net/
15 http://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html
16 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

73

Technical Support (A Tool Prototype)

We implemented a method called loadModel to load the ML model from the server drive into the server

memory using Java API. In Fig. 38 we show the complete implementation of this method.

public void loadModel (String ModelfileName) {
try {

FileInputStream FS=new FileInputStream(ModelfileName) ;

ObjectInputStream inModel = new ObjectInputStream(FS) ;
Object ClassifierObject = inModel.readObject() ;

classifier = (FilteredClassifier) ClassifierObject;
inModel.close() ;

System.out.println("Loaded model: " 4+ ModelfileName) ;
}

catch (Exception ex)

{
System.out.println("Problem:" + ModelfileName) ;

Fig. 38. loadModel method implementation

The Object ObjectinputStream holds the model into the memory. Then, we defined a Weka API object
classifier of type FilteredClassifier. This object is responsible for the classification process, which holds the

ML algorithm that s used in the training phase towards finding out the appropriate COIN type.

74

Technical Support (A Tool Prototype)

Tool Performance

We evaluated the tool performance in terms of time spent to classify textual sentences. This evaluating was
performed by classifying 10 sentences with average of 20 words per a sentence. The average time required to
classify each sentence is 1.0 second. Remember that the tool effectiveness in classifying the sentences in iden-
tical to our described achievements in section 6.2 (i.e., recall =70.2%, precision =70.4% and f-measure

=70.0%). We have tested our tool prototype on the platform configuration shown in Table 25

Table 25. Platform Cofiguration

Bus Speed

Server configuration Intel Xeon ES EDO 3.5 GB 200 MHZ

Client configuration Intel core i5 460 M 2.5 GHz DDR3 4GB 133 MHZ

Future work and development

Since our tool is currently implemented as a prototype, it is designed only to operationalize our contributed
ML classification model to show its applicability. That is, we just pointed out the potential practical advantages
that our automatic classification ideas would bring to software architects and analysts in retrieve the required

COINs from verbose of text in APl documentation.

For research time restrictions, we limited our plugin implementation to work only on one example of web
browsers (we chose Chrome because of its popularity). In future, we are planning to develop CEP-COIN tool
to work on other web browsers like Internet Explorer (IE), Firefox. On the other hand, we aim at extending
the capabilities of our CEP-COIN tool to classify multiple sentences or even a complete document at once
instead of classifying just a single sentence at once. In this case, CEP-COIN returns a list of COINs instead of

single COINSs as in our current version.

Additionally, We also intend to benefit from users feedback on the automatic classification results of the
new sentences they send to the tool (e.g., to offer an optional report for their agreement on the provided
classification or their disagreement and suggested classification). Keeping record of such data could be used
to enrich our corpus content, and consequently we could use them in improving our classification model
accuracy through continuous learnning.

Moreover, we will support CEP-COIN tool with extra features like reusability. The idea of that is by
tracking the users’ recorded data in our DB system to provide them with reports of the classified documents.
These reports can be formalized in different formats like (excel, xml, text, doc, etc.) to be incorporated in
different analysis systems in order to save time and efforts by reusing it.

Furthermore, we are planning to support the architects and software engineers with different types of

statistics and recommendations about the conceptual interoperability constraints that their analyzed document

75

Technical Support (A Tool Prototype)

have. For example, the CEP-COIN can return statatistics about sentences and their COINSs type distribution

for a complete document.

76

Research Challenges

8 RESEARCH CHALLENGES

Despite many of the challenges that we encountered, we learned something new and gained more skills and
experiences. Due to the clear goal and research plan, we continued our work and confront these difficulties in
various ways until we overcame many of them.

Along our researching which we were exploring the capabilities of using the NLP and ML technologies to
automate the extraction of the COINs from APl documents we faced many challenges that we describe bellow

along with our solutions as well.

8.1 Lack of labeled data

For using ML classification techniques, we needed a ground truth, which must include as much as possible
of already classified or labeled textual sentences from API documentations according to the COIN model. As
such, requirement did not exist; we had to build it by ourselves at the beginning of our research. This manual
task was very tedious and time consuming as we analyzed and classified each sentence from the APl docu-

ments we selected (see chapter 4). In this task, we encountered the following three sub-challenges:

1. Selecting representative APl documentation cases.

The first obstacle we faced in our research was selecting the APl documentation that meet our research
requirements (i.e., APl documents that contain conceptual information and not only technical ones, and that
are diversified and widely used). This required us to define appropriate selection criteria that directs our search

and nomination for included documents in our research (see the research methodology chapter for details).

2. Extracting relevant content from the selected API documentations

After we finished reading the selected API documentations, we faced an obstacle of content representation,
in which we found the conceptual information was not pure, but rather it contained technical noise (e.g., sen-
tences contain natural language text along with code, symbols, tags, etc.). This noise was unwanted as it was
irrelevant to our interest in the conceptual information only. Not only such a mix confuses the machine, but
also worse, it gives the human reader hard times to interpret the text. For our work, it was necessary to clean
and organize the textual content to facilitate the pattern recognition and keyword extraction for both ap-
proaches we described at section (6.1 and 6.2). In order to perform that, we first implemented a simple PHP
code using Simple HTML DOM Parser library to filter out the APl documentation from noise. (i.e., headers,
images, etc.). However, we found that, these tools were not sufficient and they were poor to meet the required
purpose. For example, the available tools are not able to filter out the code-content, which is so frequent in
many parts of the APl documentation. These tools also do not support sentence tokenization into separated
lines. Therefore, we decided to extend our manual efforts along with these tools to clean the content. Although
this manual cleaning resulted in absolutely better content, it consumed too much time and mental effort to

check sentence by sentence and word by word.

77

Research Challenges

3. Sentences with poor description.

Classifying the sentences of the textual content in the API documents required linguistic skill in to under-
stand the sentence meaning and classify according to the seven COIN classes. We needed to identify the mes-
sage delivered by each sentence, which sometimes was not trivial due to multiple messages in one sentence.
That is, some sentences had more than one COIN class within it. In addition, the document had some grammar
mistakes and ambiguous words that made it harder to interpret sentences. Actually, it was a challenging task

especially at the beginning of the research.

However, we got over this obstacle by training and practicing on the included cases and by the reviewing and

discussing session that we had as described in chapter 5 section 4.

4. Aggregating the collected data from across the cases.

Another challenge that we faced was to aggregate and organize the collected data from the distinctive cases
each with its own style. It was not trivial to put such incoherent data with different formats and structures. This
task required additional time and many attempts to figure out a suitable procedure to gather them into one data
container. The result of our effort produced one consistent database accommodating clean and organized sen-

tences for later usage within automatic ML classifiers.

8.2 Ildentifying cross-case COINs identification rules.

One of the most challenging phases of our research was to come up with a set of effective extraction rules
and features to be fed up to the machine learning algorithms in our first classification approach (i.e., rule-based
classification). It was a tedious manual investigation that consumed a lot of our research time that took ap-
proximately 35% of our effort. In particular, it was not a trivial task to identify the representative features for
each COIN class from the sentences, which contained instances of the class manually. That is, for each phrase
independently, we looked after the patterns no matter how diverse they are, then, we selected only the appro-
priate ones and neglected the insignificant ones in terms of number of occurrences. We tried different NLP
techniques (i.e., word tokenizing, stemming, Stopwords elimination, N-Gram) as aids for us to overcome these

obstacles and get better results.

8.3 Understanding the semantics and contexts.

This is considered to be the most troublesome among the issues that faces the researchers in the artificial
intelligence area. Thus, we spent part of our research time reading related papers and scientific article regarding
this issue, and we tried different approaches to maintain this problem. Finally, we settled on using N-Gram
techniques and WordNet [75] to cover meaning and context issue. For example if we consider two consecutive
words together by using N-Gram with N=2, then this helps us to preserve the word in a context, for example:
two words like “perform jobs”, “user name” allows the classification model to recognize the context of these
two words together instead of using a single word as a feature. This also was shown in our experiment, where

the prediction accuracy is better when we use N-Gram with N between 1 and 3.

78

Research Challenges

8.4 Limitation of resources.

Working with text processing technologies has a very high consumption of resources (i.e., memory and
CPU speed). In our experiments, there are two main phases require high-performance and hardware resources.
First phase (Rule-based classification) and the second phase (BOWSs-based classification, in which we ex-
tracted the features by applying NLP-Pipeline. As mentioned previously, our corpus size is 2283 COINs,
hence, the process of extracting features requires high hardware resources. In particular, this required a big
size of memory to accommodate the representation of the mathematical model resulting from this process. In
fact, it was a very difficult situation, almost ending with memory overflow after performing many experiments.
Then we restart again Weka many times to perform the experiment from scratch. To overcome this problem,
we recorded the results of the experiment after each classification process manually to assure that at least we
have the measures of the last experiments. And we faced the same problem in the second phase (BOWs).
Finally, we have solved this problem partially by configuring RunWeka.ini and then set parameter (maxheap
= 10024M instead of 1024M), then it works longer time than before but then again it shut down after some
period of time.

In fact, the consumption of resources is a common problem in machine learning and is expected to occur
frequently. Although, it was not easy to run the experiments with such resource limitations, we did not have
other alternatives.

79

Overall Discussion And Conclusion

9 OVERALL DISCUSSION AND CONCLUSION

The main goal in this thesis is to support software analyst and architect in identifying the conceptual in-
teroperability constraints, COINs, automatically in the text of API documents. In our research, we followed a
systematic empirical-based methodology that has two main advantages: (1) tracing and verifying documented
results among two research phases, and (2) repeating the defined activities in our protocol by other researchers
in order to address researcher bias threat to validity. To achieve our research goals, we explored the potentials
of using ML and NLP, built a classification model, and conducted explorative experiments. Here we offer a
summarized answer for our two main research questions:

RQ1: What are the observed patterns in specifying the conceptual interoperability constraints COINSs in the
NL text of API documentation?

Answer: Through our observation during the classification process, we found some patterns. For instance, the
sentences of type Not-COIN (which represent about 34.3% of the total COINSs in the corpus) contain signifi-
cantly many technical keywords, and they include a text explaining technical and practical details about ser-
vices/systems. For COINSs of type dynamic (which comprise about 28.3%), have some specific patterns. For
example, we found that, they include a description of the activity or the flow of operations. Additionally, they
contain many conditional sentences such as (IF/Then) sentences that are used to clarify the expected results of
the specific input. For COINs of type semantic (which constitute approximately 27.4%), have some distinctive
patterns. For example, the sentences describe the purpose or goal of the service or activity. On the other hand,
there are more than 48% of the semantic COINSs that contain special terms. Thus, we classified them into three
lists: 1) Output/Input verbs. 2) Supporting verbs. 3) Admission verbs. As shown in Appendix (Table 34,
Table 35 and Table 36).

We have also achieved additional related findings in this matter that we formulate in the following questions

and answers:

Question A: Where could we find the COINSs in the API documents, (i.e., in which sections or paragraphs)?

Answer: To the best of our knowledge and according to our reviews of the APl documents, we conclude that,
the COINs fundamentally exist in specific paragraphs such as abstract - Introduction - Overview - Conclu-
sion — Summary. In light of the fact that these paragraphs are rich within concepts and abstract level of
knowledge that are needed for analysts and architects to cover within their conceptual interoperability analy-
sis. However, COINs rarely exist in the paragraphs or sections that describe technical information such as

method description and code examples.

Question B: To which extent are API documents similar in terms of structure and format?
Answer: We have noticed that there are differences in the composition of the APl documentation. For in-
stance, some of these documents are subject to the special format and structure. Thus, we found that some

API documents such as GoogleMaps is technical oriented and serves developers rather than software archi-

80

Overall Discussion And Conclusion

tects. Therefore, mining COINs in these type of documents would be tough. While other documents like Ap-
pleWatch, SoundCloud and Eclipse serve developers and architects as they have an organized structure and
format of the information with proper balance between concepts and technicalities.

Regarding to the second defined research question for our research; we summarize its answer as below.
RQ2: How effective and efficient would it be to use Natural Language Processing (NLP) along with Machine
Learning (ML) technologies to automate the extraction of COINs from the text in APl documentations?
Answer: Initially, when using ComplementNaiveBayes algorithm for classifying Seven-COIN and Two-
COIN. We got encouraging results with F-measure of 70.0%, which is a quite good result. On the other hand,
when classifying only Two-COIN, the results get better with F-measure of 81.9%, which is about 11.9% higher
than the accuracy of classifying Seven-COIN. It is self-evident because classifying multi-classes requires more

holistic data, while classifying data of less classes will show better results if we have the same volume of data.

Similar as the first research question we have achieved further findings related to RQ2 that we formulate in
the following questions and answer.

Question C: What is the best text classification algorithm for identifying the COINs in API documents?
Answer: In fact, for each problem domain, there is a different text classification algorithm. In particular, after
our experiments that we have performed, we came up with that, ComplementNaiveBayes achieved the best

performance in terms of accuracy in classifying the COINs.

Question D: How can the classification model be used in practice?

Answer: In fact, a simple and practical mechanism to use such model is through utilizing a plugin tool that
works through a web browser. More specifically, we have developed the classification model using Weka API
and Java API together. However, the user interface is designed as a chrome plugin, which can be used easily

and instantly, and again the accuracy of our tool depends on the accuracy of the model that we have designed.

Question E: What can improve efficiency?
Answer: We expect that classifying more sentences from other API documents and adding them to the ground

truth (i.e. COIN Corpus) will increase the effectiveness of our proposed ML classification model.

81

Future Work

10 FUTURE WORK

There is a window for more enhancements that can be performed in the future to our research and below

we mention some of the most important ones.

1. Improving the performance of our ML classification model. Obviously, this requires us to train the classifier
on more training data set, which in turn requires us extra effort and time to classify more sentences of API
documents into the COINS’ classes. As the volume of data plays a fundamental role in increasing the effi-
ciency of the automated classifier [28].

2. The use of deep learning techniques: which is a branch of machine learning based on a set
of algorithms that attempt to model high-level abstractions in data by utilizing multiple processing layers,
with complex structures [82] [83]. Which has proven their effectiveness and superiority in the field of clas-
sification of texts [84]. In Addition, using such techniques may help in comprehending the textual content,
which is one of the most serious challenges in the ML area. However, it is relatively difficult to apply such
techniques because of their need for high hardware resources and equipment with high specifications (e.g.,
high processor speed and memory size).

3. Preparing our tool for industrial usage by increasing its efficiency and supporting its work in different plat-
forms (i.e., to be compatible with different web browsers and IDE environments).

4. Extending our tool with more features, so that it is able to find all COINs in an API document by segmenting
it into sentences first, and then by classifying each sentence separately into the COIN classes.

5. Improving the current ML classification model to do self-learning through the feedback collected from users
such as engineers and architects. This is expected to improve the accuracy of the classifier due to the added

knowledge by the experts.

82

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm

Appendix

11 APPENDIX

11.1 Tables

A. The extraction data sheet used for collecting data.

Table 26. The extraction data sheet

Sentence id Sentence COINS Type APl Document ‘

83

Appendix

B. Part of Speech (POS) tagging [85]

Table 27. Part-of-speech tags used in the Penn Treebank?” [86]

Tag ‘ Description
1]|cCC Coordinating conjunction
2| CD Cardinal number
3| DT Determiner
4 | EX Existential there
5| FW Foreign word
6 | IN Preposition or subordinating conjunction
714 Adjective
8 | UR Adjective, comparative
9 | S Adjective, superlative
10 | LS List item marker
11 | MD Modal
12 | NN Noun, singular or mass
13 | NNS Noun, plural
14 | NNP Proper noun, singular
15 | NNPS Proper noun, plural
16 | PDT Predeterminer
17 | POS Possessive ending
18 | PRP Personal pronoun
19 | PRPS Possessive pronoun
20 | RB Adverb
21 | RBR Adverb, comparative
22 | RBS Adverb, superlative
23 | RP Particle
24 | SYM Symbol
25 | TO to
26 | UH Interjection
27 | VB Verb, base form
28 | VBD Verb, past tense
29 | VBG Verb, gerund or present participle
30 | VBN Verb, past participle
31 | VBP Verb, non-3rd person singular present
32 | VBZ Verb, 3rd person singular present
33 | WDT Wh-determiner
34 | WP Wh-pronoun
35 | WPS Possessive wh-pronoun
36 | WRB Wh-adverb

17 penn Treebank is a large corpus, approximately 7 million words of part-of-speech tagged text, 3 million words of skel-
etally parsed text, over 2 million words of text parsed for predicate argument structure, and 1.6 million words of tran-
scribed spoken text annotated for speech disfluencies. URL.: http://citeseerx.ist.psu.edu/viewdoc/sum-
mary?do0i=10.1.1.9.8216 [86].

84

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8216
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8216

Appendix
C. Top frequently terms

Table 28. Top 30 frequently terms used in "Dynamic" class

‘ Co-occurrence keyword

1 111 job
2 94 user
3 80 app
4 51 interface
5 46 client
6 46 create
7 46 method
8 45 notification
9 44 use
10 42 request
11 41 access
12 40 api
13 38 object
14 38 plug
15 38 value
16 36 watch-chain
17 35 specify
18 34 lock
19 33 time-share
20 32 schedule
21 30 include
22 30 set-up
23 29 run
24 28 property
25 27 application
26 27 data
27 27 platform
28 26 code
29 26 default
30 26 note

85

Appendix

Table 29. Top 30 frequently terms used in "Semantic" class

Co-occurrence keyword ‘

1 84 user
2 78 plug
3 67 app
4 59 provide
5 50 platform
6 48 interface
7 46 job
8 45 extension
9 43 content
10 43 notification
11 40 application
12 39 use
13 38 work-in
14 36 person
15 36 return
16 33 display
17 32 request
18 30 api
19 30 object
20 29 allow
21 29 define
22 29 support
23 29 type
24 28 result
25 28 system
26 28 watch-chain
27 26 create
28 25 file
29 24 client
30 24 method

86

Appendix

Table 30. Top 30 frequently terms used in "Structure™ class

Co-occurrence keyword ‘

1 20 interface

2 18 content

3 17 app

4 17 contain

5 16 collection

6 16 type

7 14 person

8 13 include

9 13 object
10 12 plug
11 11 file
12 11 platform
13 10 implement
14 10 property
15 9 bundle
16 9 user
17 8 class
18 7 application
19 7 controller
20 7 distribution
21 7 extension
22 7 watch-chain
23 6 data
24 6 eclipse
25 6 note
26 6 represent
27 6 separate
28 6 work-in
29 5 button
30 5 create

87

Appendix

Table 31. Top 30 frequently terms used in "Syntax" class

‘ Co-occurrence ‘ keyword
1 15 calculate
2 15 route
3 13 indicate
4 10 specify
5 9 user
6 8 prefer
7 7 conversation
8 6 avoid
9 6 direction
10 6 transit
11 5 person
12 5 travel
13 4 character
14 4 element
15 4 mode
16 4 set-up
17 4 time-share
18 4 xml
19 3 activity
20 3 app
21 3 application
22 3 call
23 3 collection
24 3 eclipse
25 3 information
26 3 key
27 3 language
28 3 manifest
29 3 platform
30 3 plug

88

Appendix

Table 32. Top 30 frequently terms used in "Quality" class

Co-occurrence keyword
1 user
2 4 direction
3 4 provide
4 3 access
5 3 api
6 3 note
7 3 result
8 3 token
9 2 application
10 2 availability
11 2 bicycle
12 2 cancel
13 2 cause
14 2 content
15 2 display
16 2 fail
17 2 include
18 2 integrate
19 2 javascript
20 2 language
21 2 lead-in
22 2 malicious
23 2 match
24 2 oauth
25 2 optimize
26 2 parse
27 2 performance
28 2 platform
29 2 plug
30 2 presence

89

Appendix

Table 33. Action Verbes

Co-occurrence Verb
1 46
2 44 use
3 42 request
4 41 access
5 38 plug
6 34 lock
7 30 include
8 30 set-up
9 29 run

10 25 start

11 22 call-up

12 20 redirect

13 19 register

14 19 track

15 18 run-up

16 17 add

17 17 update

18 15 acquire

19 15 avoid

20 14 call

21 13 perform
22 12 return

23 12 store

24 11 implement
25 11 install

26 10 build-up
27 10 launch

28 10 receive

29 10 search

30 9 connect
31 9 determine
32 9 flow

33 9 list

34 9 load

35 8 execute
36 8 initiate

37 8 select

38 8 send

49 8 share

90

Appendix

Table 34. Output/Input verbs

1 | access

2 | display

3 | download

4 | fetch

5 | notify

6 | read

7 | recall

8 | receive

9 | recover
10 | response
11 | retrieve
12 | return
13 | select
14 | send
15 | share
16 | submit
17 | upload

Table 35. Supporting verbs

support
provide
Suggest

give

u A W N R

propose

Table 36. Admission verbs

‘ Verb

allow
enable
admit
let
give
grant
permit

facilitate

O 00 N O U b~ W N

authorize

=
o

prevent
11 | stop
12 | avoid

91

Appendix

Table 37. Defined Stopwords

#

1 !

2 #

3 #for
4 $

5 $

6 *

7 /

8 @

9 +

10 a

11 about
12 above
13 all

14 also
15 an

16 and
17 another
18 any
19 any
20 anyone
21 are
22 as

23 at

24 b

25 be

26 but
27 by

28 c

29 etc
30 everyone
31 here
32 in

33 into
34 is

35 it

36 its

37 like
38 no

39 not
40 now
41 of

42 often
43 on

44 only

92

Appendix

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

or
other
others
our
over
re

s

s
such
t

that
the
their
them
then
there
therefore
these
they
this
those
to

up

us
was
we
were
which
who
will
with
within
X

y

yours

93

Bibliography

12 Bibliography

[1] H. Abukwaik , M. Naab and D. Rombach, "A Proactive Support for Conceptual Interoperability
Analysis in Software Systems," in Software Architecture (WICSA), 2015 12th Working IEEE/IFIP
Conference on, Montreal, 2015.

[2] H. Abukwaik, M. Abujayyab, S. R. Humayoun and D. Rombach, "Extracting Conceptual
Interoperability Constraints from APl Documentation using Machine Learning,” in The 38th
International Conference on Software Engineering (ICSE 2016) Companion, TX,USA, 2016.

[3] IEEE standard computer dictionary. A compilation of IEEE standard computer glossaries - IEEE
Std 610, Library of Congress Catalog Number 90-086306, 1990.

[4] ISO/IEC 2382:2015(en)- Information technology -Vocabulary - Terms and definitions.

[5] " C4ISR Interoperability Workig Group: Levels of information systems interoperability (11-Sl).
Technical Report, Department of Defense (1998)".

[6] B. J. Powers, "A multi-agent architecture for NATO network enabled capabilities: enabling
semantic interoperability in dynamic environments (NC3A RD-2376)," in Service-Oriented
Computing: Agents, Semantics, and Engineering, Springer, 2008, pp. 93-103.

[7] "Extending the levels of conceptual interoperability model,” in Proceedings IEEE Summer
Computer Simulation Conference. IEEE CS Press (2005) , 2005.

[8] H. Abukwaik, D. Taibi and D. Rombach, "Interoperability-Related Architectural Problems and
Solutions in Information Systems: A Scoping Study,” in Software Architecture: 8th European
Conference, ECSA 2014, Vienna, 2014.

[9] P. Jackson and I. Moulinier , Natural Language Processing for Online Applications: Text retrieval,
extraction and categorization - Second revised edition (Natural Language Processing), 2nd ed., John
Benjamins Publishing Company, 2007, pp. 2-3.

[10] L. Shane and H. Marcus, "A Collection of Definitions of Intelligence," in Proceedings of the 2007
Conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms:
Proceedings of the AGI Workshop 2006, 2007.

[11] R. Grishman, Computational linguistics: an introduction, Cambridge University Press, 1986, pp.
4-5.

[12] D. Marneffe and C. Manning, Stanford typed dependencies manual, 2008.

[13] Manning and D. K. Christopher, "Natural Language Parsing," in Advances in Neural Information
Processing Systems 15: Proceedings of the 2002 Conference, 2003.

[14] D. Marneffe, M. Catherine, MacCartney, Bill , Manning and Christopher , "Generating typed
dependency parses from phrase structure parses," in Proceedings of LREC, vol. 6, 2006, pp. 449-454.

[15] K. Madani, A. D. Correia, A. Rosa and J. Filipe, Studies in Computational Intelligence, vol. 577,
Springer; 2015 edition (October 16, 2014), pp. 3-5.

[16] J.S. Gero and S. Hanna, Design Computing and Cognition '14, Springer; 2015 edition (April 17,
2015), 2015, p. 477.

[17] C. Bird, T. Menzies and T. Zimmermann, The Art and Science of Analyzing Software Data,
Morgan Kaufmann; 1 edition (September 15, 2015), pp. 499-500.

[18] “Stanford Dependencies,” The Stanford Natural Language Processing Group, 03 April 2016.
[Online]. Available: http://nlp.stanford.edu/software/stanford-dependencies.shtml. [Accessed 03
April 2016].

[19] F. L. Gaol and Q. V. Nguyen, "Incorporating Non-local Information into Information Extraction
Systems by Gibbs Sampling,” in Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, Stroudsburg, PA: Association for Computational Linguistics, 2005, pp.
363-370.

[20] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to
Algorithms, 1st ed., Cambridge University Press; 1 edition (May 19, 2014).

94

Bibliography

[21] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to
Algorithms, 1st ed., Cambridge University Press, 2014.

[22] M. Maharasi and N. A. Sophia, "A Survey of Text Categorization and its Various," (IJCSIT)
International Journal of Computer Science and Information Technologies, vol. 6, no. 3, 2015.

[23] S. Fabrizio, "Text Categorization," 2005.
[24] K. P.Murphy, "Naive bayes classifiers," University of British Columbia, 2006.

[25] Leung and K. Ming, "Naive bayesian classifier," Polytechnic University Department of Computer
Science/Finance and Risk Engineering, 2007.

[26] H.N. Vladimir N. Vapnik AT&T Bell Labs, The Nature of Statistical Learning Theory, New York,
NY: Springer-Verlag New York, Inc., 1995.

[27] Tong, Simonand Koller and Daphne, "Support Vector Machine Active Learning with Applications
to Text Classification,” J. Mach. Learn. Res., vol. 2, pp. 45--66, 2002.

[28] M. Banko and E. Brill, "Scaling to very very large corpora for natural language disambiguation,"
in Proceedings of the 39th Annual Meeting on Association for Computational Linguistics,
Toulouse,France, 2001.

[29] C. Silva and B. Ribeiro, Inductive Inference for Large Scale Text Classification: Kernel
Approaches and Techniques, Springer, 2009, pp. 26-27.

[30] A. Gelbukh, F. C. Espinoza and S. N. Galicia-Haro, "Feature Selection Based on Sampling and
C4.5 Algorithm to Improve the Quality of Text Classification Using Naive Bayes," in Human-
Inspired Computing and its Applications: 13th Mexican International Conference on Artificial
Intelligence, MICAI2014, Tuxtla Gutiérrez, Mexico, November 16-22, 2014. Proceedings, Part 1,
Mexico.

[31] R. S. Kumaran, K. Narayanan and J. N. Gowdy, "Language modeling using independent
component analysis for automatic speech recognition,” in Signal Processing Conference, 2005 13th
European, IEEE, 2005, pp. 1--4.

[32] W.ChuandT. Y. Lin, Foundations and Advances in Data Mining (Studies in Fuzziness and Soft
Computing), Springer; 2005 edition (October 26, 2005), pp. 225-226.

[33] S. Robertson, "Understanding inverse document frequency: On theoretical arguments for IDF,"
Journal of Documentation, vol. 60, p. 2004, 2004.

[34] M. Radovanovi¢ and M. Ivanovi¢, "Text mining: Approaches and applications," Novi Sad J. Math,
vol. 38, no. 3, pp. 227-234, 2008.

[35] M. J. Michael P. Oakes, Ed., Quantitative Methods in Corpus-Based Translation Studies: A
Practical Guide to Descriptive Translation Research (Studies in Corpus Linguistics), John Benjamins
Publishing Company (March 20, 2012), 2012.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, "Distributed representations of
words and phrases and their compositionality,” in Advances in neural information processing systems,
2013, pp. 3111-3119.

[37] “Feature selection,” Stanford University, [Online]. Available: http://nlp.stanford.edu/IR-
book/html/htmledition/feature-selection-1.html. [Accessed 03 April 2016].

[38] G. Forman, "An Extensive Empirical Study of Feature Selection Metrics for Text Classification,"
J. Mach. Learn. Res, vol. 3, pp. 1289-1305, 01 March 2003.

[39] S. Zhou, K. Liand Y. Liu, "Text categorization based on topic model," International Journal of
Computational Intelligence Systems, vol. 2, no. 4, pp. 398-409, 2009.

[40] A. Navot, R. Gilad-Bachrach, Y. Navot and N. Tishby, "Is Feature Selection Still Necessary?," in
Proceedings of the 2005 International Conference on Subspace, Latent Structure and Feature
Selection, Bohinj, Slovenia, Springer-Verlag, 2006, pp. 127-138.

[41] A. Arora, A Selective-phrase-based Preprocessor for Improved Spam Filtering, 2008, pp. 19-20.

[42] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie and H. Mei, "Inferring Dependency Constraints on
Parameters for Web Services," in Proceedings of the 22Nd International Conference on World Wide
Web, Rio de Janeiro, Brazil, International World Wide Web Conferences Steering Committee, 2013,
pp. 1421-1432.

95

Bibliography

[43] R.Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney and A. Paradkar, "Inferring Method Specifications
from Natural Language APl Descriptions,” in Proceedings of the 34th International Conference on
Software Engineering, Zurich, Switzerland, IEEE Press, 2012, pp. 815-825.

[44] F. Melvin, First-order logic and automated theorem proving, 2nd ed., Springer-Verlag New York,
Inc., 1996.

[45] H.Zhong, L. Zhang, T. Xie and H. Mei, "Inferring Resource Specifications from Natural Language
API Documentation," in Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, IEEE Computer Society, 2009, pp. 307-318.

[46] U. Dekel and J. D. Herbsleb, "Improving APl Documentation Usability with Knowledge Pushing,"
in Proceedings of the 31st International Conference on Software Engineering, IEEE Computer
Society, 2009, pp. 320-330.

[47] S. Forrest , S. Janice and S. I. K. Dag, Guide to Advanced Empirical Software Engineering,
Springer; 2008 edition (October 26, 2007), 2007.

[48] R. Victor, Basili, G. Caldiera and H. D. Rombach, "The Goal Question Metric Approach,” in
Encyclopedia of software engineering -2 volume set, Wiley, 1994.

[49] R.K.Yin, Case Study Research: Design and Methods (Applied Social Research Methods), p. 46.

[50] R. Bakeman and J. M. Gottman, Observing Interaction: An Introduction to Sequential Analysis,
2nd ed., Cambridge University Press; 2 edition (March 13, 1997), 1997.

[51] B. Claudia, R. Mike and P. J. Gordon, "Automatic Grammar Rule Extraction and Ranking for
Definitions™.

[52] M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java 6th
Edition, Wiley, 2014,

[53] S. Dumais, J. Platt, D. Heckerman and M. Sahami, Inductive Learning Algorithms and
Representations for Text Categorization, New York, NY: ACM, 1998, pp. 148--155.

[54] Rish and Irina, "An empirical study of the naive Bayes classifier," in 1JJCAI 2001 workshop on
empirical methods in artificial intelligence, vol. 3, 2001, pp. 41--46.

[55] F. Colas and P. Brazdil, "Comparison of SVM and Some Older Classification Algorithms in Text
Classification Tasks," in Artificial Intelligence in Theory and Practice, vol. 217 , M. Bramer, Ed.,
Springer Science \& Business Media, 2006.

[56] J. Rennie, L. Shih, J. Teevan and D. Karger, "Tackling the Poor Assumptions of Naive Bayes Text
Classifiers," in In Proceedings of the Twentieth International Conference on Machine Learning,
2003, pp. 616--623.

[57] A. McCallum and K. Nigam, A comparison of event models for Naive Bayes text classification,
1998.

[58] B.Pablo, G. Jose and P. Jose , "Improving the Performance of Naive Bayes Multinomial in e-Mail
Foldering by Introducing Distribution-based Balance of Datasets,," vol. 38, pp. 2072--2080, March
2011.

[59] A. Roshani and D. PR, "Instance-based vs Batch-based Incremental Learning Approach for
Students Classification," International Journal of Computer Applications, vol. 106, no. 3, 2014.

[60] B. Neeraj, S. Girja, B. Ritu and M. Manish, "Decision tree analysis on j48 algorithm for data
mining," Proceedings of International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 3, no. 6, 2013.

[61] A. Jehad, K. Rehanullah, A. Nasir and M. Imran, "Random forests and decision trees,"
International Journal of Computer Science Issues (IJCSI), vol. 9, no. 5, 2012.

[62] D. A. Freedman, Statistical Models: Theory and Practice., Cambridge University Press, 2009, p.
128.

[63] M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning (Adaptive
Computation and Machine Learning series), The MIT Press (August 17, 2012), 2012, pp. 129-131.

[64] N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, vol. 3,
The American Statistician 46, p. 175-185.

[65] C. Silva and B. Ribeiro, Inductive Inference for Large Scale Text Classification (Kernel
Approaches and Techniques), vol. 225, Berlin: Springer-Verlag, pp. 21-24.

96

Bibliography

[66] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2004, pp. 330-331.

[67] S. Fabrizio, "Machine learning in automated text categorization,” ACM computing surveys
(CSUR), vol. 34, no. 1, pp. 1-47, March 2002.

[68] P. Buitelaar and P. Cimiano, Ontology Learning and Population: Bridging the Gap Between Text
and Knowledge, 10S Press , 2008 , p. 138.

[69] Z.Cai, Z. Li, Z. Kang and Y. Liu, "Complex Numerical Evaluation Measures," in Computational
Intelligence and Intelligent Systems (4th International Symposium on Intelligence Computation and
Applications), Springer, p. 469.

[70] X. Guo, Y. Yin, C. Dong, G. Yang and G. Zhou, "On the Class Imbalance Problem," in Fourth
International Conference on Natural Computation, Jinan, 2008.

[71] M. Melucci and R. Baeza-Yates, Advanced Topics in Information Retrieval (The Information
Retrieval Series), Springer; 2011 edition (June 27, 2011), 2011, p. 64.

[72] G. A.Jivani, A Comparative Study of Stemming Algorithms.

[73] M.F. Porter, "An algorithm for suffix stripping. Program,” Program, vol. 14, no. 3, pp. 130 - 137,
1980.

[74] B. J. Lovins, "Development of a stemming algorithm,” Mechanical Translation and
Computational Linguistics, vol. 11, pp. 22-31, 1968.

[75] "About WordNet," [Online]. Available: https://wordnet.princeton.edu/. [Accessed 11 02 2016].

[76] S. Scott and S. Matwin, "Text Classification Using WordNet Hypernyms," in Usage of WordNet
in Natural Language Processing Systems, 1998, pp. 45--51.

[771 J. Kwak and H.-S. Yong , "Ontology Matching Based on hypernym, hyponym, holonym, and
meronym Sets in WordNe," International Journal of Web & Semantic Technology.

[78] “Latest SOAP versions,” W3C, [Online]. Available: https://www.w3.0rg/TR/soap/. [Accessed 06
April 2016].

[79] "Web Services Description Language (WSDL) 1.1, W3C, [Online]. Available:
https://www.w3.0rg/TR/wsdl. [Accessed 06 April 2016].

[80] R. Reis, "Information Technology: Selected Tutorials,” in IFIP 18th World Computer Congress
Tutorials, Toulouse, France, 2004.

[81] "Weka 3 - Data Mining with Open Source Machine Learning Software in Java," cs.waikato.ac.nz,
[Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/documentation.html. [Accessed 06 April
2016].

[82] L. DengandD. Yu, Deep Learning Methods and Applications, Now Publishers Inc, 2014.

[83] J. Porter, Deep Learning: Fundamentals, Methods and Applications (Education in a Competitive
and Globalizing World), Nova Science Pub Inc.

[84] M. lyyer, V. Manjunatha, J. Boyd-Graber and H. Daum’e, "Deep Unordered Composition Rivals
Syntactic Methods for Text Classification,” in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing, Beijing, China}, 2015.

[85] "Alphabetical list of part-of-speech tags used in the Penn Treebank Projec,” [Online]. Available:
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank pos.html. [Accessed 07 03
2016].

[86] A. Taylor, M. Marcus and B. Santorini, The Penn Treebank: An Overview, 2003.

[87] L. Quoc V and T. Mikolov, "Distributed representations of sentences and documents,” arXiv
preprint arXiv:1405.4053, 2014.

[88] A. Singhal, "Modern Information Retrieval: A Brief Overview," IEEE Data Eng. Bull., vol. 24,
pp. 35-43, 2001.

[89] S.J., Gershman and B. Joshua, "Phrase similarity in humans and machines," 2015.

[90] A. Ginter, R. Kruse and B. Neumann, Eds., KI 2003: Advances in Artificial Intelligence: 26th
Annual German Conference on Al, Kl 2003, Hamburg, Germany, September 15-18, 2003,
Proceedings, Springer; 2003 edition (November 5, 2003), 2003, p. 454.

97

Bibliography

[91] M. Bryan, "Formal Definition of Semantic Concepts,” [Online]. Available: http://www.is-
thought.co.uk/concept.htm. [Accessed 23 2 2016].

[92] H. Amiri and T.-S. Chua, "Sentiment Classification Using the Meaning of Words,"” AAAI
Workshops; Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, 15 07 2012.

[93] C. Borg, M. Rosner and G. Pace, "Evolutionary algorithms for definition extraction,” in WDE '09
Proceedings of the 1st Workshop on Definition Extraction, Stroudsburg, PA, USA, 2009.

98

	1 INTRODUCTION
	1.1 Overview
	1.2 Research methodology and contributions
	1.3 Outline

	2 BACKGROUND
	2.1 Conceptual Interoperability
	2.2 Natural Language Processing (NLP)
	2.3 Machine Learning (ML)

	3 RELATED WORK
	4 RESEARCH METHODOLOGY
	4.1 Research methods
	4.2 Goals and Research Questions

	5 RESEARCH PART ONE: MULTIPLE-CASE STUDY
	5.1 Study design (Holistic multiple-case study)
	5.2 Study Execution
	5.3 Discussion
	5.4 Threats to validity

	6 RESEARCH PART TWO: AUTOMATIC IDENTIFICATION
	6.1 First Approach: Rule-based Machine Learning Classification
	Rule construction using NLP
	Exploratory Experiment
	Evaluation Metrics
	Results and Evaluation

	6.2 Second Approach: Bag-of-Words-based Machine Learning Classification
	Data preparation
	Perquisites input for our ML classification model.
	Exploratory Experiment
	Evaluation Metrics
	Results and Evaluation.

	7 TECHNICAL SUPPORT (A TOOL PROTOTYPE)
	Principle of work
	Using the CEP-COIN Tool
	CEP-COIN Architecture
	CEP-COIN Implementation
	Tool Performance
	Future work and development

	8 RESEARCH CHALLENGES
	8.1 Lack of labeled data
	8.2 Identifying cross-case COINs identification rules.
	8.3 Understanding the semantics and contexts.
	8.4 Limitation of resources.

	9 OVERALL DISCUSSION AND CONCLUSION
	10 FUTURE WORK
	11 APPENDIX
	11.1 Tables

	12 Bibliography

